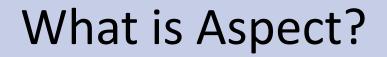


Before you start the virtual machine:

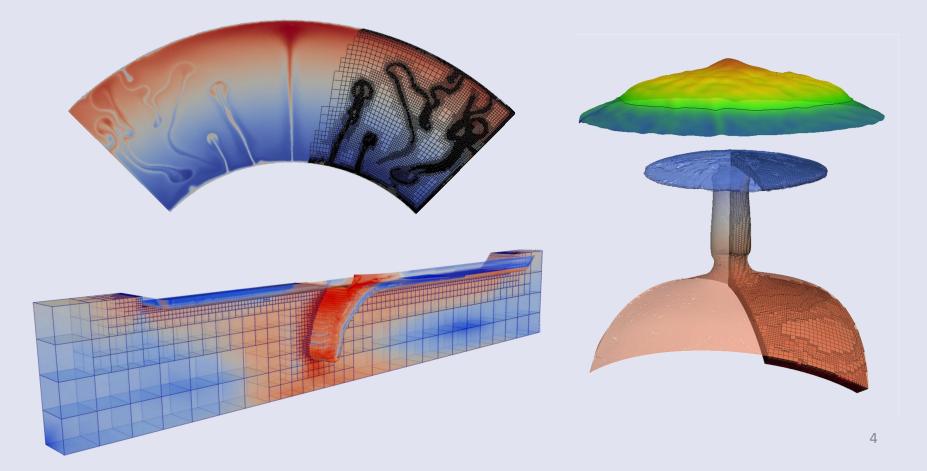
- In Virtual Box: "Settings" → "System" → "Processor" tab → pick number of CPUs (2 or 4)
- Start your virtual machine and log into the aspect_user account
- Click on the gear symbol ("System Settings")

- Click on "Brightness & Lock"
- Set: "Turn screen off when inactive for:" to "Never"
- Turn "Lock" slider to "off"



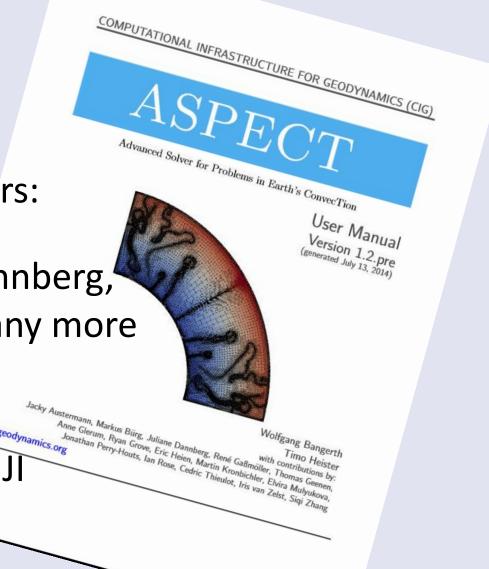
ASPECT tutorial

Wolfgang Bangerth Juliane Dannberg Rene Gassmöller Timo Heister


Lecture 0 First Steps Running ASPECT

ASPECT

- Advanced Solver for Problems in Earth's Convection -


Credits

Website and manual: aspect.dealii.org

Developers & contributors: Wolfgang Bangerth, Timo Heister, Juliane Dannberg, Rene Gassmöller and many more

Publication: Kronbichler et al. 2012 GJ

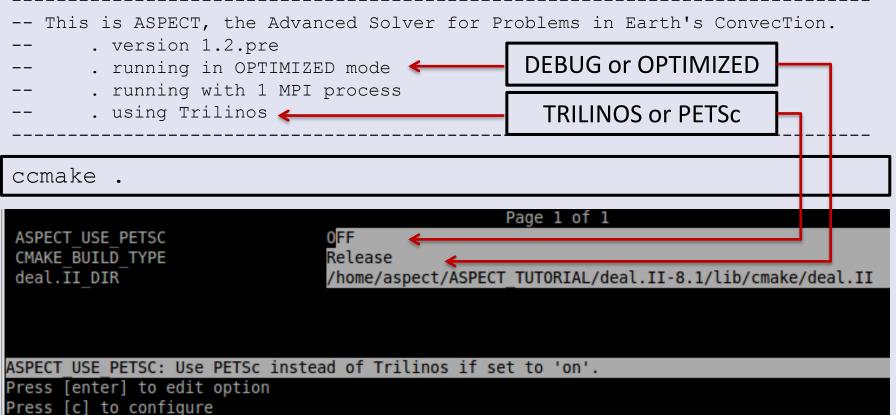
- Basic usage of ASPECT is specified through a parameter file
- The parameter file is used by the simulation to determine the discretization, parameters, initial conditions, boundary conditions, etc.
- By the end of this tutorial, you should be able to:
 - 1. Run aspect from the command line.
 - 2. Understand the basic layout of the parameter files that are used to control Aspect simulations.
 - 3. Be able to visualize the generated output in ParaView.

- We will begin by running ASPECT in the Terminal
- 1. Change to the appropriate directory

cd Desktop

 Run ASPECT with the tutorial parameter file and print the output to a file named progress.txt (this will take about 20 seconds)

./aspect tutorial.prm | tee progress.txt


3. Open progress.txt and check the Rayleigh number

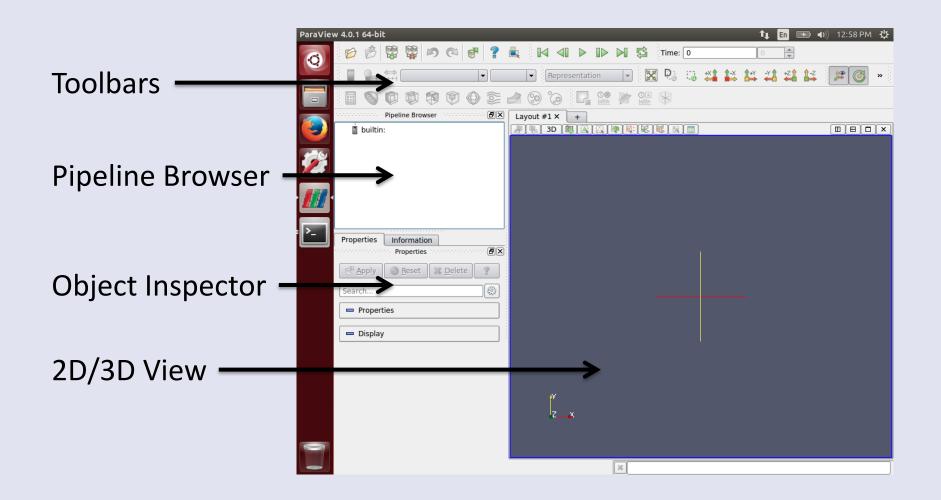
gedit progress.txt

Debug or Optimized mode?

• When you start ASPECT...

Press [h] for help Press [q] to quit without generating

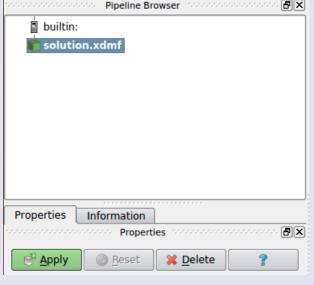
Press [t] to toggle advanced mode (Currently Off)

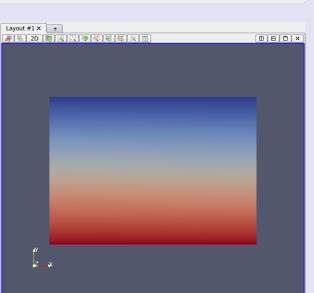

Visualizing Results with ParaView

- To visualize the simulation results, we will use ParaView
- ParaView is a program for visualization of large data sets
- It is already installed on the virtual machine, open it now by clicking the icon on the desktop or typing "paraview"
- ParaView supports visualization tools such as isosurfaces, slices, streamlines, volume rendering, and other complex visualization techniques

- Start by opening solution.pvtu which was created by running ASPECT
- You can choose "Open" from the File menu or use the Open icon
 in the toolbar
- The file is in /home/aspect_user/Desktop/output/

Look in:	ile: (open multiple files with <ctrl> key.) //home/cig/tutorial/aspect/output/</ctrl>	
i Home	Filename	
	particle.xdmf solution.xdmf	
i output		
	~	
	L	
	File name: solution.xdmf	ОК


- The file will appear in the pipeline browser
 - Make sure this is solution.pvd
- The list of properties (variables) appears in the object inspector
 - The file contains temperature (T), pressure (p), and velocity
- Click "Apply" to show the field in the view area
 - By default, no field is shown
 - Select "T" in the toolbar to show the temperature field


o id

id

Solid Color

elocitv

First

Frame

Previous

Frame

Play/Pa

use

Next

Frame

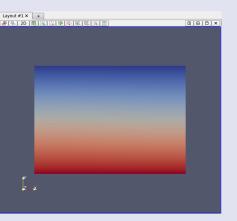
Visualization with ParaView

- The top toolbar has buttons to change the time, shown below
 - Click the play button and watch how the temperature field changes

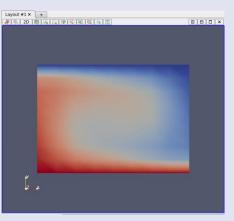
Time:

1.90612e+10

Simulation


Time

 Near the end, is the temperature field static? Is the velocity field static? Is material moving?

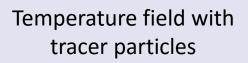

Loop

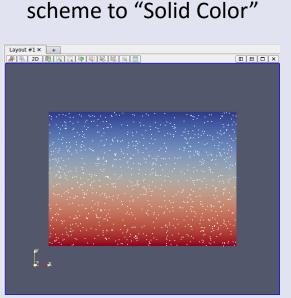
Last

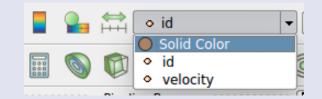
Frame

Frame 0

+


69


Time step


number

- Open the file particle.pvd and click "Apply"
 - The tracer particles from the simulation now appear on the temperature field
 - By default they are uniformly colored
 - Click play again to see how material is flowing with the tracer particles
 - Even when the temperature field is static, is material flowing?
 - How would you characterize this flow pattern? Where is the upwelling material? The downwelling material?

Change the coloring

Lecture I ASPECT – A Next-generation geodynamic modeling software Juliane Dannberg

Equations and models, and how they are represented in ASPECT

Setup of the numerical model CIG COMPUTATIONAL INFRASTRUCTURE FOR GEODYNAMICS

- Numerical models generally consist of several key components:
 - 1. The rules (e.g. equations) for the model
 - 2. The discretization of the model
 - 3. Model parameters
 - 4. Dependent and independent variables
 - 5. The initial state of the model
 - 6. The boundary conditions
- We will go through the parameter file and look at these components

gedit tutorial.prm


ASPECT - General

- First we look at general parameters for the simulation
- Dimension=2 specifies a two dimensional problem
- Internally, the calculations will use seconds, but the output will be represented in years
 - This helps to understand processes on Earth time scales
- End time has been set to 5x10¹⁰ years.
 - Side note: computers often use E notation, such that 2 x 10³ is written 2E3
 - Hence we write 5e10 or 5E10 rather than 5×10^{10}
- Simulation output will be stored in the directory named "output".

3	set Dimension	= 2
8	set Use years in output instead of seconds	= true
9	set End time	= 5e10
10	set Output directory	= output

u	velocity	$\frac{m}{s}$
p	pressure	Pa
T	temperature	Κ
$\varepsilon(\mathbf{u})$	strain rate	$\frac{1}{s}$
η	viscosity	$Pa \cdot s$

ho	density	$\frac{kg}{m^3}$
g	gravity	$\frac{m}{s^2}$
C_p	specific heat capacity	$\frac{J}{kg\cdot K}$
k	thermal conductivity	$\frac{W}{m \cdot K}$
Η	intrinsic specific heat production	$\frac{W}{kq}$

$$-\nabla \cdot \left[2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right)\right] + \nabla p = \rho \mathbf{g}$$
$$\nabla \cdot (\rho \mathbf{u}) = 0$$

Momentum equation

Conservation of mass

Includes compressibility

u	velocity	$\frac{m}{s}$
p	pressure	Pa
T	temperature	Κ
$\varepsilon(\mathbf{u})$	strain rate	$\frac{1}{s}$
η	viscosity	$Pa \cdot s$

ho	density	$\frac{kg}{m^3}$
භ	gravity	$\frac{m}{s^2}$
C_p	specific heat capacity	$\frac{J}{kg\cdot K}$
k	thermal conductivity	$\frac{W}{m \cdot K}$
Н	intrinsic specific heat production	$\frac{W}{kg}$

$$-\nabla \cdot \left[2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right)\right] + \nabla p = \rho \mathbf{g}$$
 Momentum equation

$$\nabla \cdot (\rho \mathbf{u}) = 0$$
 Conservation of mass

$$\rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T\right) - \nabla \cdot k \nabla T = \rho H$$
 Conservation of energy
Change of
energy over
time
Advection
Heat
conduction
Radiogenic heating

$$P C_p \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right) : \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right) = \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right)$$

$$-\frac{\partial \rho}{\partial T} T \mathbf{u} \cdot \mathbf{g}$$
 Shear heating

$$+ \rho T \cdot \Delta S \frac{DX}{Dt}$$
 Adiabatic heating $\frac{\partial \rho}{\partial T} = -\rho \alpha$
latent heat (phase changes)

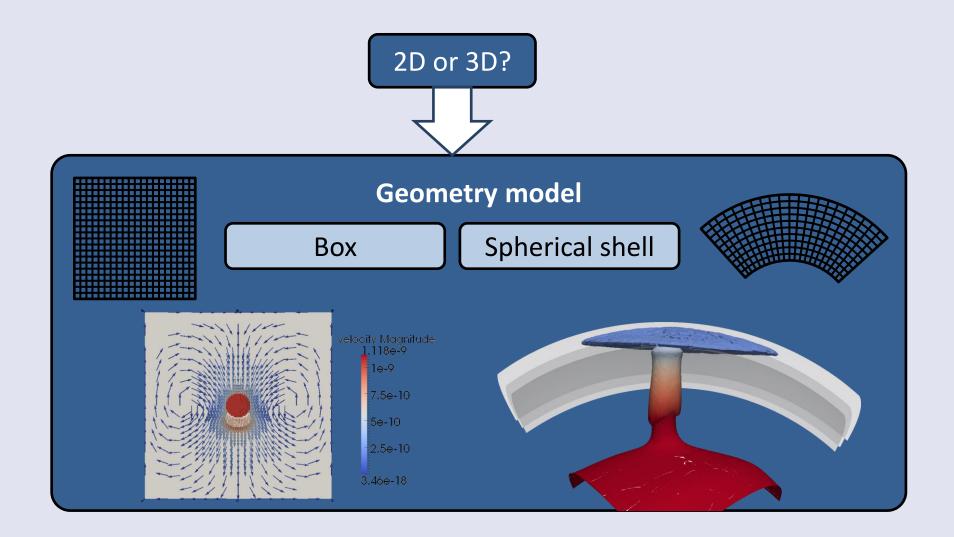
 $-\nabla$.

ρ

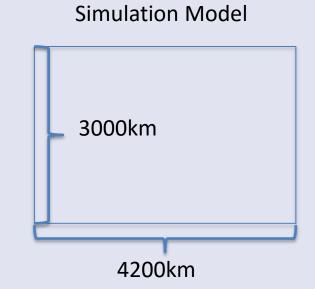
 $:\left(arepsilon(\mathbf{u})-rac{1}{3}(\nabla\cdot\mathbf{u})\mathbf{1}
ight)$

$$\begin{bmatrix} 2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right) \end{bmatrix} + \nabla p = \rho \mathbf{g} \qquad \text{Momentum equation} \\ \nabla \cdot (\rho \mathbf{u}) = 0 \qquad \text{Conservation of mass} \\ C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) - \nabla \cdot k \nabla T = \rho H \qquad \text{Conservation of energy} \\ + 2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right) : \left(\varepsilon(\mathbf{u}) - \frac{\partial \rho}{\partial T} T \mathbf{u} \cdot \mathbf{g} \right) + \rho T \cdot \Delta S \frac{DX}{Dt} \\ \frac{\partial c_i}{\partial t} + \mathbf{u} \cdot \nabla c_i = 0 \qquad \text{Advection of composition} \end{aligned}$$

dvection of compositional fields Field method (or tracer method)


Summary of equations

- Compressibility
- 2- or 3-dimensional domain Ω, different geometries
- Total pressure
- Radiogenic heating
- Adiabatic heating, shear heating & latent heat
- Advection of any number of compositional fields

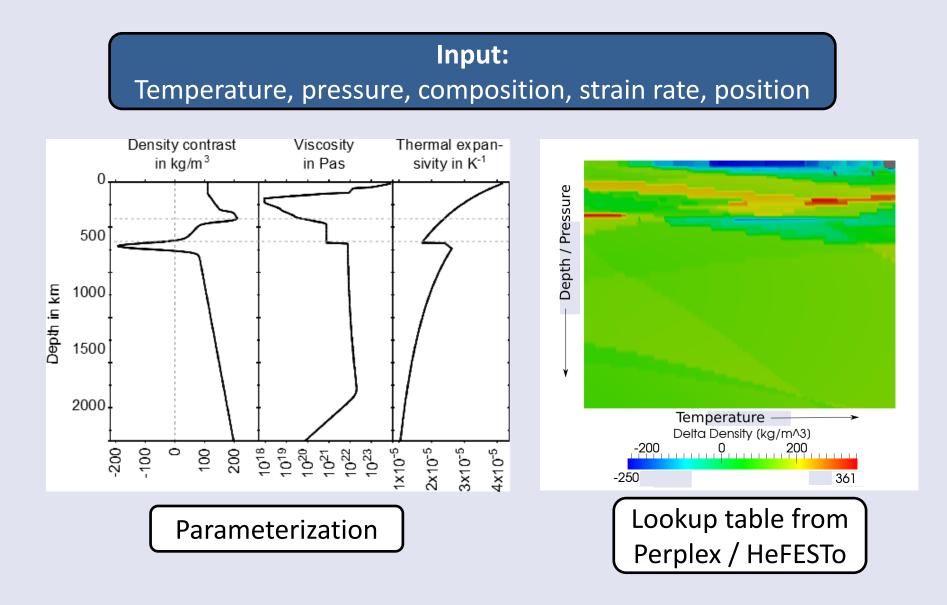

Geometry model

ASPECT - Geometry

- Aspect has many built in geometry models such as "box" and "shell".
- A box is a rectangle in 2D and a cuboid in 3D.
- The width (X extent) of the box is 4.2 x 10⁶ meters and the depth (Y extent) is 3 x 10⁶ meters.
- The choice of meters as the unit of length is external to the parameter file; i.e. the user has to ensure the consistency of the various units used in the parameter file.


21subsection Geometry model22set Model name = box23subsection Box24set X extent = 4.2e625set Y extent = 3e626end27end

ASPECT - Discretization


- Initial global refinement specifies the "grid spacing" of our mesh.
- For this tutorial, REFINE=3 or 4 or 5.
- Adaptive mesh refinement has been turned off, i.e. the mesh does not change during the simulation.

34	subsection Mesh refinement
35	set Initial global refinement = REFINE
36	set Initial adaptive refinement = 0
37	set Time steps between mesh refinement = 0
38	end

Material model

ASPECT - Model Parameters

- Aspect provides various built in material models, and a framework for users to implement custom material models.
- In this tutorial, you control the Rayleigh number with the viscosity parameter.
- There are several other parameters which control reference density, temperature dependence of viscosity, etc. These have default values shown below.

$$Ra = \frac{\rho_0 g \alpha \Delta T D^3}{\eta \kappa}$$
$$\eta = \frac{\rho_0 g \alpha \Delta T D^3}{\kappa Ra}$$
$$= \frac{5.0993 \times 10^{28}}{Ra}$$

Default Values

$$p_0 = 3300, g = 9.8, \alpha = 2 \times 10^{-5}, \Delta T = (3600 - 273) = 3327$$

 $D = 3 \times 10^6, k = 4.7, c_p = 1250, \kappa = \frac{k}{\rho_0 c_p} = 1.1394 \times 10^{-6}$

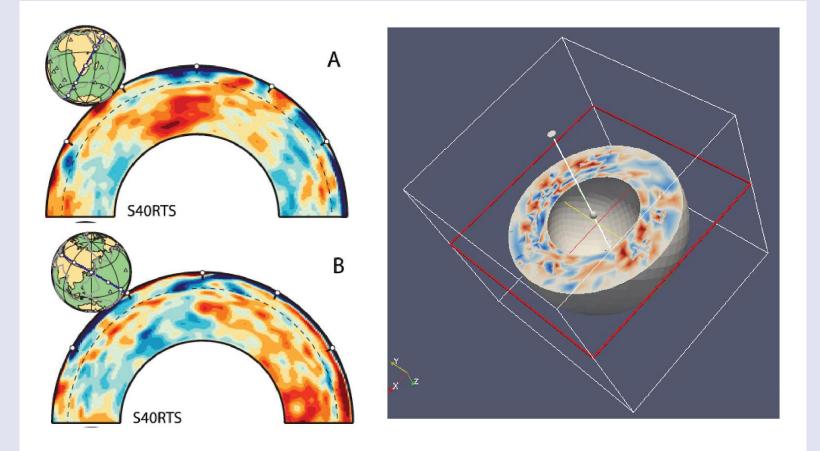
44	subsection Gravity model	51	subsection Material model
45	set Model name = vertical	52	set Model name = simple
46	subsection Vertical	53	subsection Simple model
47	set Magnitude = 9.8	54	set Viscosity = VISCOSITY
48	end	55	end
49	end	56	end

Nusselt-Rayleigh Relationship CIG COMPUTATIONAL for GEODYNAMICS

	Ra=4,000	Ra=20,000	Ra=100,000	Ra=500,000
End Time	1e12	2e11	3e10	5e9
Viscosity	1.275E25	2.550E24	5.099E23	1.020E23
Refine = 3	(???)	(???)	(???)	(???)
Refine = 4	(???)	(???)	(???)	(???)
1.00E+00				
8.00E-01				
6.00E-01			——————————————————————————————————————	Refinement=3
4.00E-01			— F	Refinement=4
2.00E-01			F	Refinement=5
0.00E+00		1		
	Ra=4e3 Ra=2	2e4 Ra=1e5	Ra=5e5	

ASPECT - Initial Conditions

- Aspect has initial condition models to specify the temperature initial conditions and framework for users to implement custom initial condition models.
- The function model lets us specify the initial temperature as a mathematical formula, with user defined constants.
- Here we are specifying a sinusoidal perturbation of a linear temperature profile.


 $T(x,y) = T_{top} + (T_{bottom} - T_{top})(1 - \frac{y}{D} - p\cos(\frac{k\pi x}{L})\sin(\frac{\pi y}{D})$

Initial temperature field (p=-0.5)

Seismic models as initial condition CI C COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

From J. Austermann

122 end

6/21/2016

121 end

95

- set Prescribed velocity boundary indicators =
- 96 set Tangential velocity boundary indicators = 0,1,2,3
- 106

118

•

- 116

front/back in 3D)

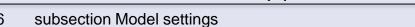
heat flux (insulated)

- subsection Boundary temperature model
- 117
- set Model name = box
- subsection Box
- end

- set Fixed temperature boundary indicators = 2,3

set Bottom temperature = 3600

set Top temperature = 273


names for each boundary part

fixed at 3600 K, top is 273K

- 94 set Zero velocity boundary indicators

All boundaries (0,1,2,3) are free-slip

- 87
- 86 subsection Model settings

Geometry models also provide symbolic

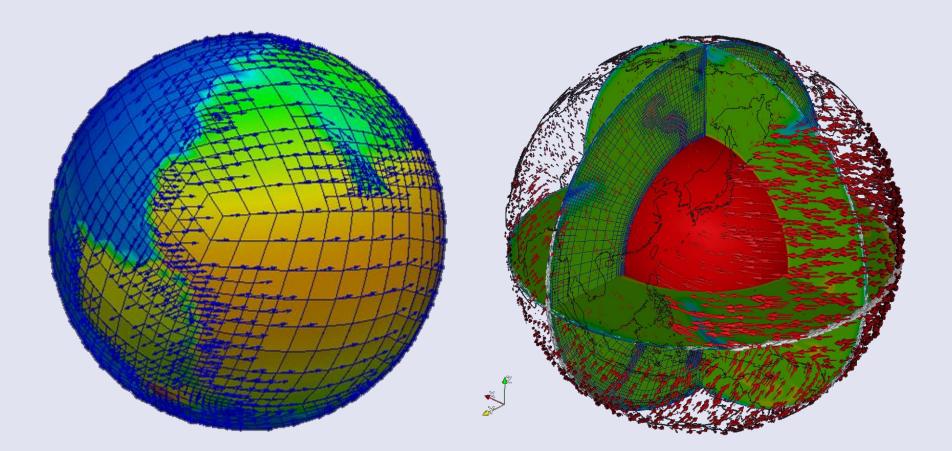
3 (Insulated) Insulated) 0 2 3600 K

273K

ASPECT - Boundary Conditions

The temperature at the bottom of the box is

If unspecified, the boundaries default to no


Depending on the model, Left and Right

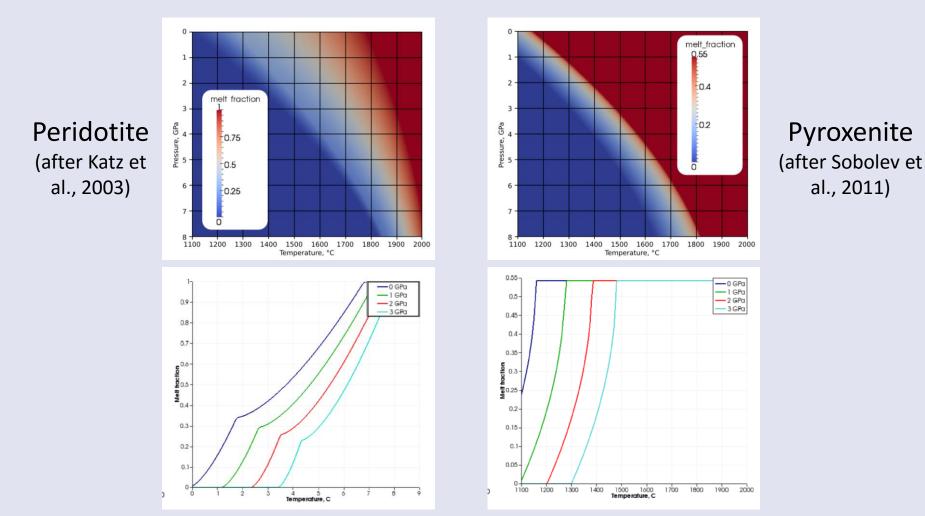
options can be similarly specified (and

Boundary conditions model CIG COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

From R. Gassmoeller

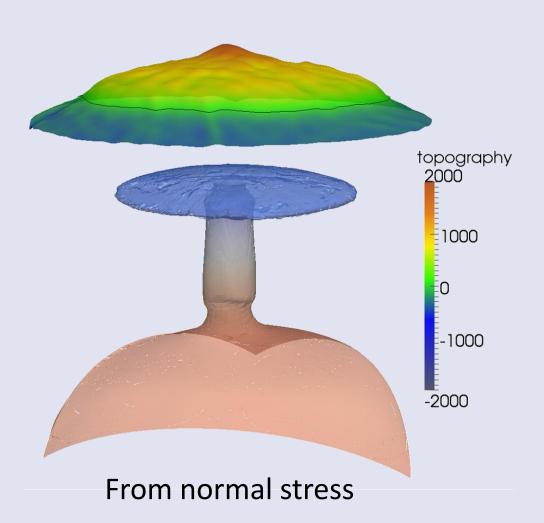
GPlates

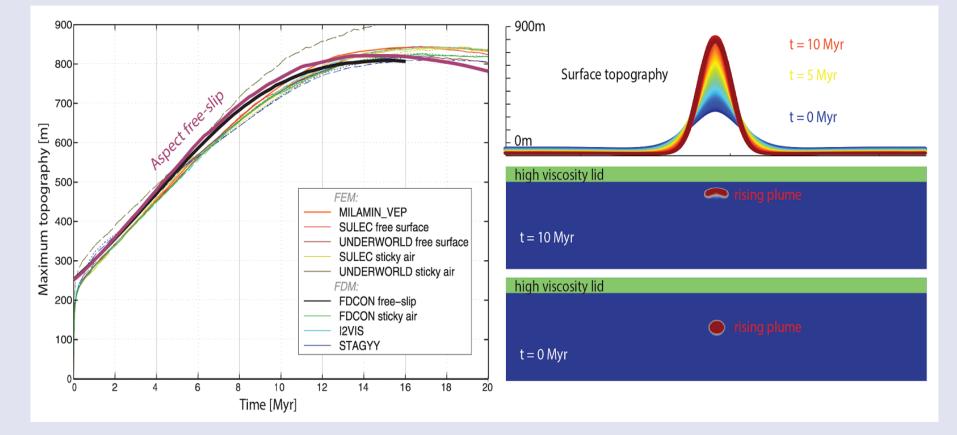
ASPECT - Postprocessing



- This section of the parameter file specifies how to analyze the data that has been generated.
- Heat flux statistics and visualization will be used in this tutorial.
- Graphical output is generated every 1e7 simulated years
- We will also add tracer particles to better understand the flow pattern

_		
	133	subsection Postprocess
	134	set List of postprocessors = velocity statistics, temperature
		statistics, heat flux statistics
	135	subsection Visualization
	136	set Time between graphical output = 1e7
	137	set Output format = hdf5
	138	end
	139	subsection Tracers
	140	set Number of tracers = 1000
	141	set Time between data output = 1e7
	142	set Data output format = hdf5
	143	end
	144	end


Melt fraction postprocessor



Surface topography

Topography: free-slip (Crameri et al, 2012) CIG COMPUTATIONAL for GEODYNAMICS

Work with J. Austermann

$\rho C_p \left(\frac{\partial T}{\partial t} + (\mathbf{u} - \mathbf{u}_m) \cdot \nabla T \right) - \nabla \cdot k \nabla T = \rho H \quad \text{in } \Omega$

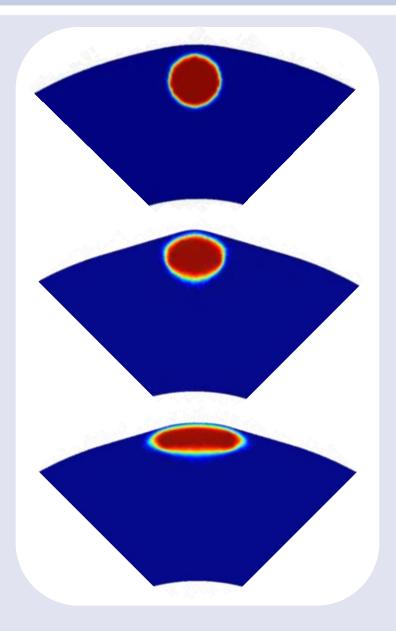
Using the stabilization of:

Boris JP Kaus, Hans Mühlhaus, and Dave A May. A stabilization algorithm for geodynamic numerical simulations with a free surface. Physics of the Earth and Planetary Interiors, 181(1):12– 20, 2010.

From I. Rose

Topography: Free Surface

Using an arbitrary Lagrangian-Eulerian framework Equations for moving the mesh nodes:


$$\begin{aligned} -\Delta \mathbf{u}_m &= 0 & \text{in } \Omega \\ \mathbf{u}_m &= (\mathbf{u} \cdot \mathbf{n}) \mathbf{n} & \text{on } \partial \Omega_{\text{free surface}} \\ \mathbf{u}_m \cdot \mathbf{n} &= 0 & \text{on } \partial \Omega_{\text{free slip}} \\ \mathbf{u}_m &= 0 & \text{on } \partial \Omega_{\text{Dirichlet}} \end{aligned}$$

Modification of the advection equation:

Free surface

From I. Rose 42

ASPECT as software: Philosophy and numerical methods

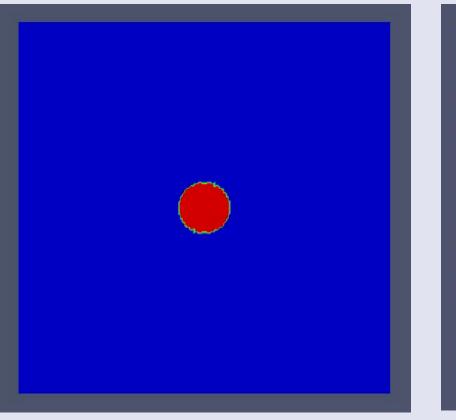
Codes in Geodynamics

- There are some widely used codes
- Almost all codes use globally refined meshes
- Almost all codes use lowest order elements
- Most codes use "simple" solvers
- No code has been "designed" with a view to
 - extensibility
 - maintainability
 - correctness

As a "community code", Aspect needs to satisfy these goals:

- Can solve problems of interest (to geodynamicists)
- Be well tested
- Use modern numerical methods
- Be very easy to extend to allow for experiments
- Freely available

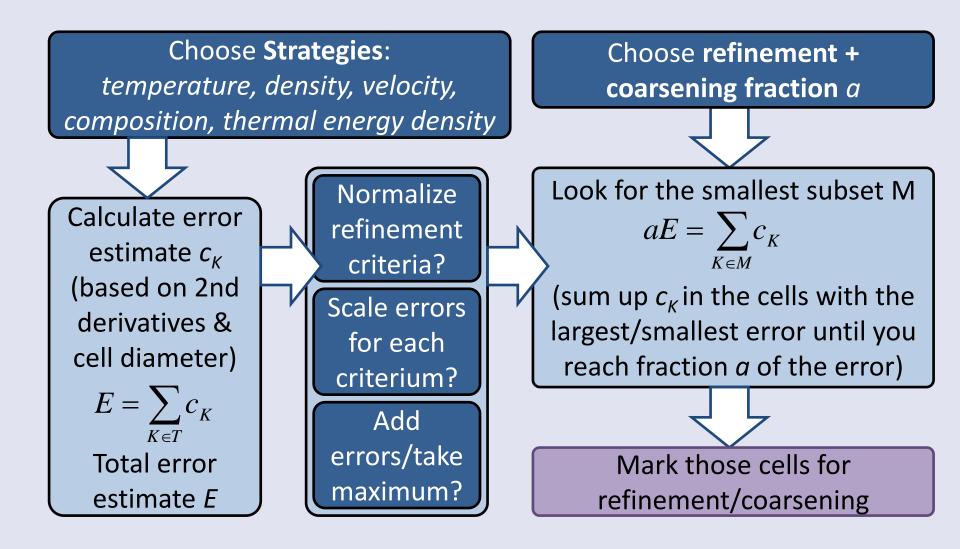
Numerical methods



- Mesh adaptation
- Accurate discretizations (choice of finite element for velocity and pressure + nonlinear artificial diffusion for temperature stabilization)
- Efficient linear solvers (preconditioner + algebraic multigrid)
- Parallelization of all of the steps above
- Modularity of the code

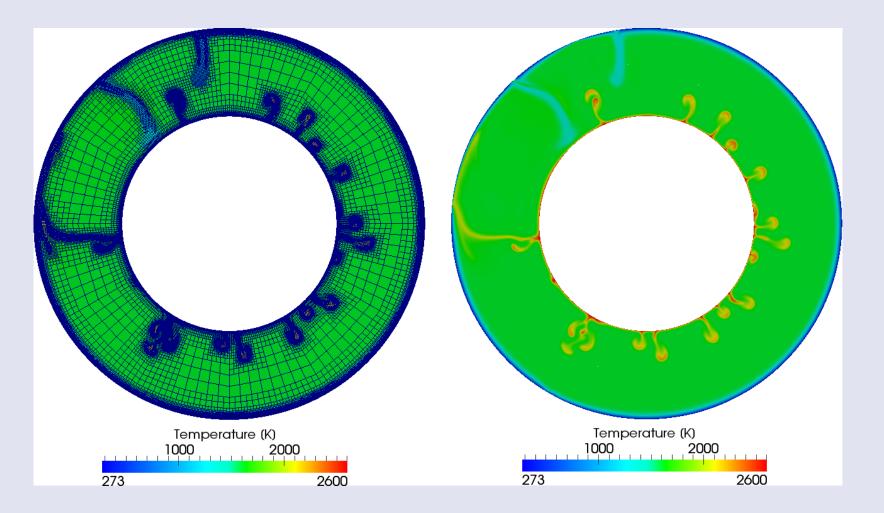
Mesh adaptation

Example: Composition as refinement strategy

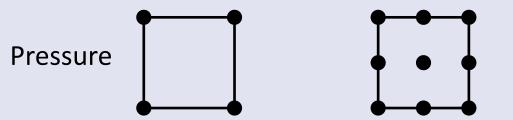


Compositional field

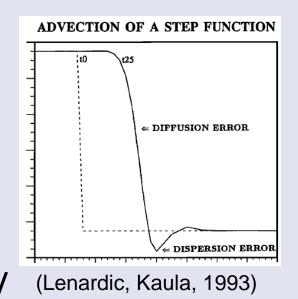
Mesh cells, colors indicate the estimated error


Mesh adaptation

Mesh adaptation



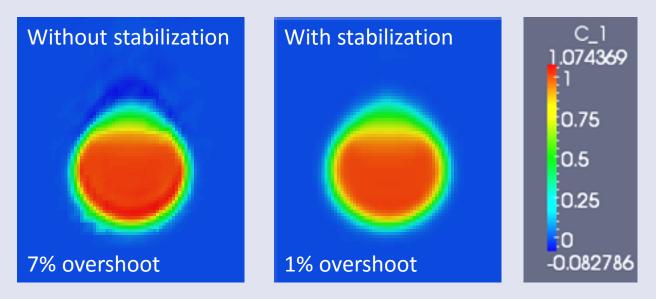
Discretization


- Finite element method
- Uses Cartesian coordinates (mapping for curved boundaries)
- Free choice of finite element basis functions
- Stability: choose polynomial degree of velocity one order higher than for pressure (e.g. linear and quadratic)

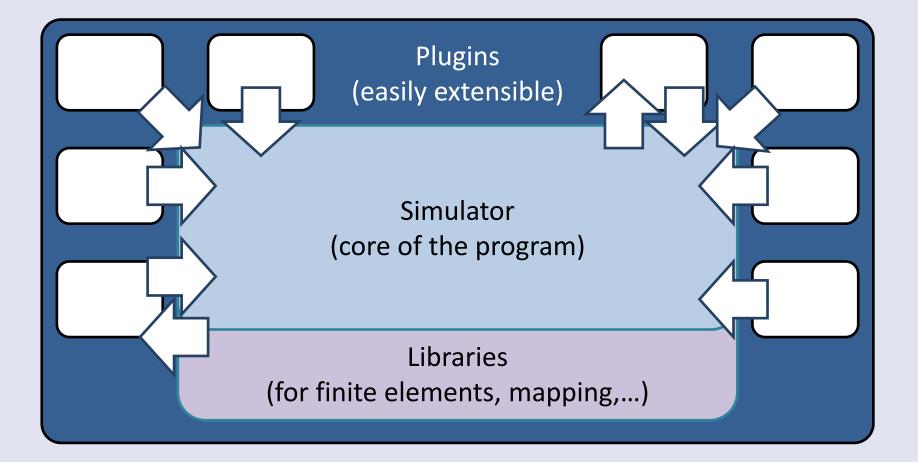
Velocity, temperature, composition

Discretization of temperature CIG COMPUTATIONAL for GEODYNAMICS

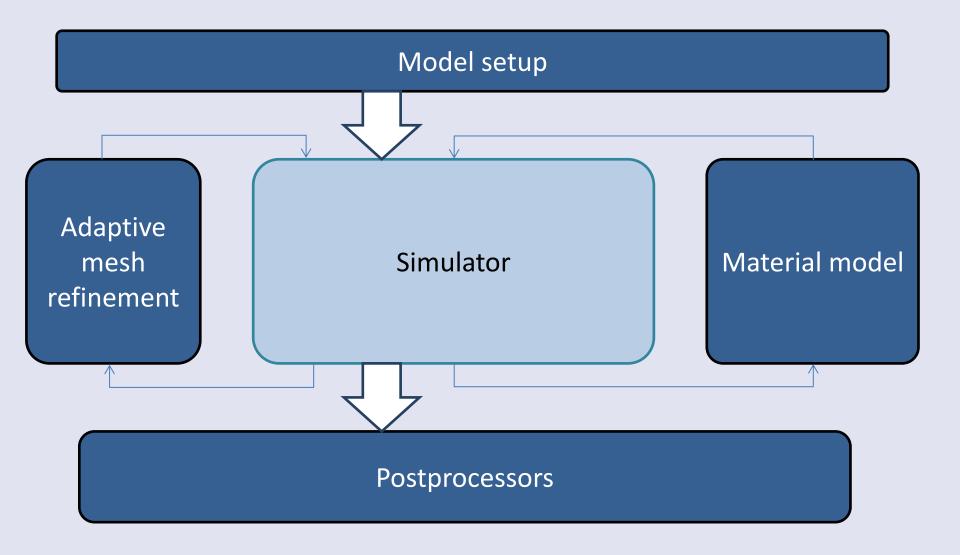
- Problem: high gradients and low diffusivity
- > Over- and undershooting
- Stabilization needed!
- Solution: entropy viscosity method (Guermond et al., 2011)
- Add artificial diffusion, but only in regions with high temperature/ compositional gradients

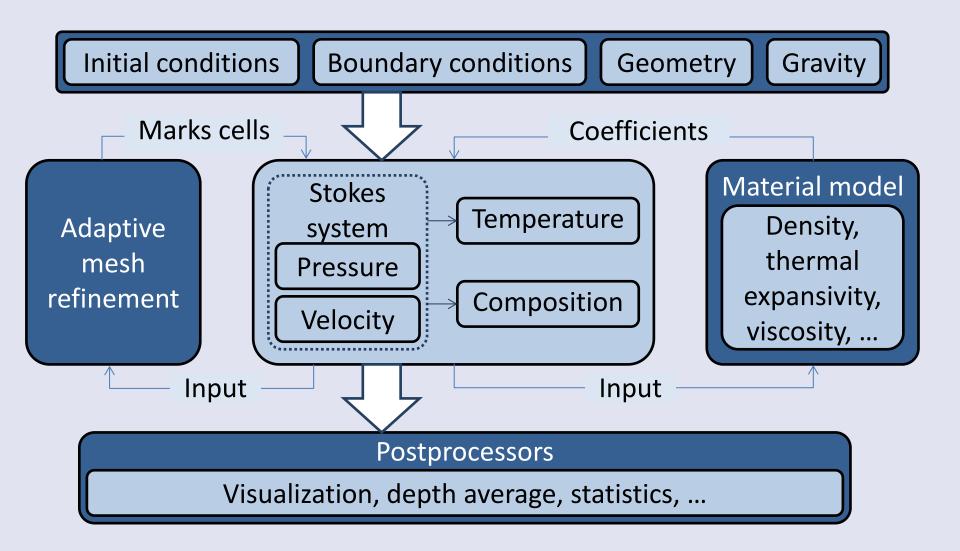

Discretization

Modified temperature/composition equation:

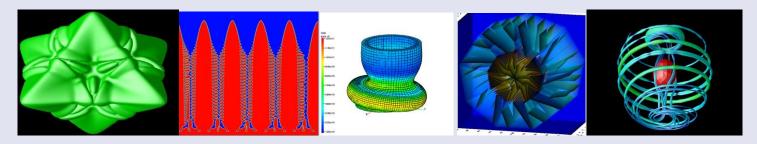

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T - \nabla \cdot (\kappa + \nu_h(T)) \nabla T = \gamma$$

• Result:


Modularity

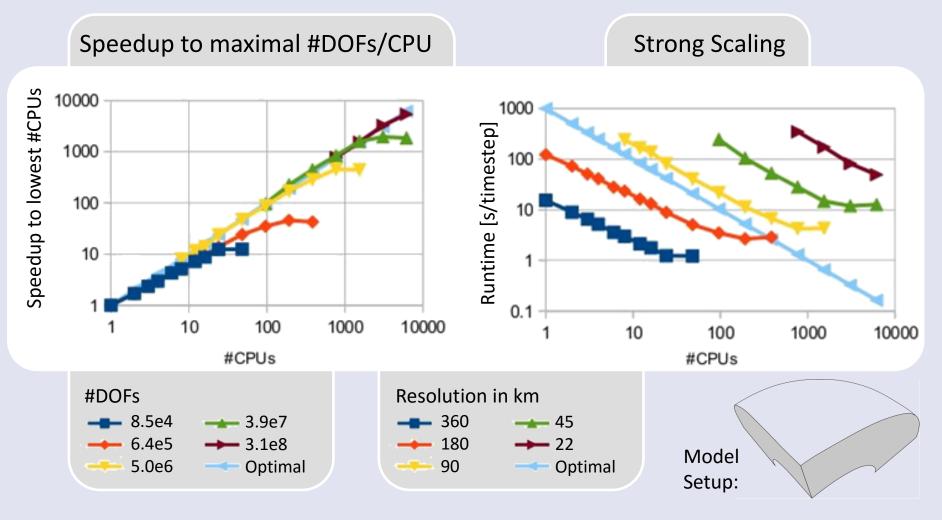

Modularity

Modularity


- After crash of program
- Use the final state of one model as initial condition for a series of models
- \rightarrow Restart required
- Aspect creates checkpoint files
- Possibility to change parameters in restarted model (material laws, postprocessors)

Building on libraries

- Meshes, finite elements, discretization: <u>http://www.dealii.org/</u>
- a C++ program library targeted at the computational solution of PDEs using adaptive finite elements



- Temperature: Conjugate gradient with preconditioner (LU decomposition)
- Stokes system (pressure & velocity): Generalized minimal residual method with preconditioner (includes conjugate gradient solves & algebraic multigrid)

Scaling

CI COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

Work with R. Gassmoeller

Tutorial I Convection in a 2D Box

(Nusselt-Rayleigh Relationship)

Nusselt-Rayleigh Relationship CIG COMPUTATIONAL IN FRASTRUCTURE

- We will use ASPECT to study the relationship between the Rayleigh number and the surface heat flux
- In geodynamics, the Rayleigh number indicates the presence and strength of convection in the mantle
- The Nusselt number is the ratio of convective to conductive heat transfer
- If the Rayleigh number goes up, how does the Nusselt number change?
- How does the mesh resolution affect the accuracy of these results?

Nusselt-Rayleigh Relationship CI Computational Infrastructure

Other output is shown in "output/statistics".
 Open this file and see what sort of values are stored here.

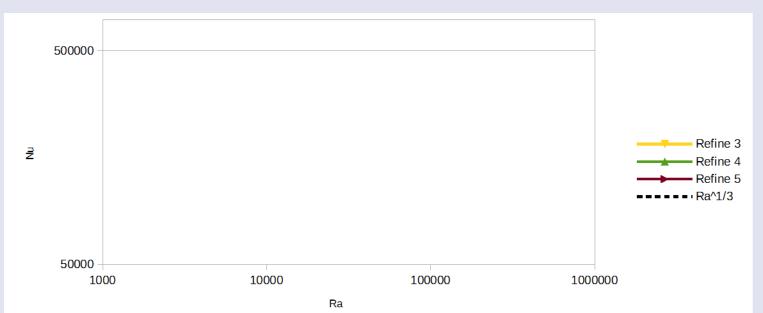
gedit output/statistics

2. We want to see how heat flux changes over time. Plot the results in gnuplot showing simulation time vs. heat flux

> gnuplot plot "output/statistics" using 2:20 with lines

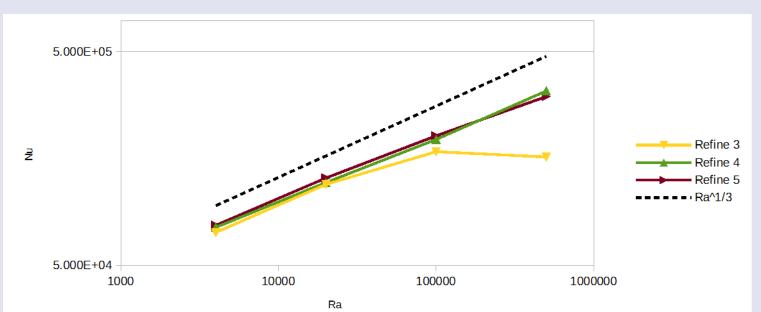
3. What is the surface heat flux at the end of this run?

Nusselt-Rayleigh Relationship CIG COMPUTATIONAL INFRASTRUCTURE


- We will split the class into multiple groups identified by the Rayleigh number, mesh refinement combination.
- You will need to:
 - Modify the tutorial.prm file to use your assigned refinement, end time, and Rayleigh number

Change the Rayleigh number by modifying the viscosity – remember, higher viscosity means lower Rayleigh number

- 2. Run the simulation (./aspect tutorial.prm)
- 3. Visualize the results and make sure they are realistic
- Report the heat flux number at the top boundary (boundary 3). This is related to the Nusselt number
- 5. Note: to halt a simulation, press "Control-C"


Nusselt-Rayleigh Relationship CI Computational Infrastructure for Geodynamics

Ra	4000	20000	100000	500000
end time	1.000E+12	2.000E+11	3.000E+10	5.000E+09
viscosity	1.275E+25	2.550E+24	5.099E+23	1.020E+23
Refine 3				
Refine 4				
Refine 5				
Ra^1/3				

Nusselt-Rayleigh Relationship CIG COMPUTATIONAL for GEODYNAMICS

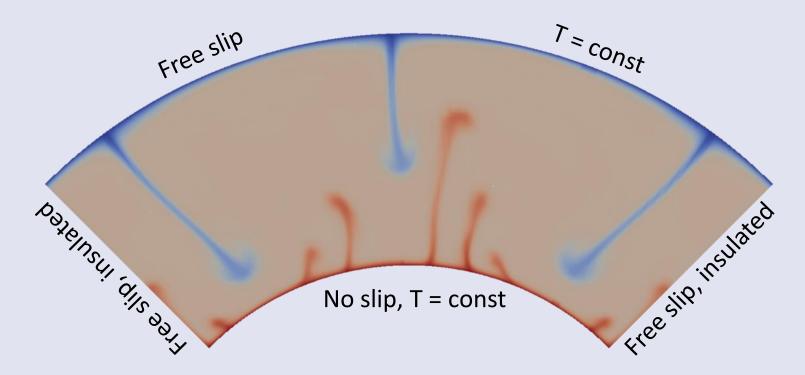
Ra	4000	20000	100000	500000
end time	1.000E+12	2.000E+11	3.000E+10	5.000E+09
viscosity	1.275E+25	2.550E+24	5.099E+23	1.020E+23
Refine 3	7.142E+04	1.198E+05	1.71E+005	1.61E+005
Refine 4	7.544E+04	1.222E+05	1.945E+05	3.278E+05
Refine 5	7.719E+04	1.284E+05	2.023E+05	3.086E+05
Ra^1/3	9.524E+04	1.629E+05	2.785E+05	4.762E+05

Things to play with

- Plot Nusselt number over time
- Change geometry
- Change boundary conditions
- Open manual and go through the list of cookbooks

input files are in ~/aspect-source/cookbooks

Tutorial II Using the adaptive mesh refinement & spherical shell geometry



- At the end of this tutorial, you should be able to:
 - Set up a model with Earth-like geometry and temperature in Aspect
 - Set up a model with adaptive mesh in Aspect
 - Decide which mesh refinement strategy to use
 - Know a bit more about how the mesh influences the flow field ⁽³⁾

Setup: Convection in a Shell

- Geometry: Quarter of a spherical shell
- Constant initial temperature with a perturbation to start the upwelling

Tasks

- We will split the class into multiple groups identified by the mesh refinement (number of global refinements)
- You will need to:
 - 1. Modify the spherical_shell.prm file to use your assigned refinement number/strategy
 - 2. Run the simulation
 - 3. Visualize the results and make sure they are realistic
 - 4. Check which features of the flow field are resolved
 - 5. Note: to halt a simulation, press "Control-C"

Using ASPECT

• Edit the input file:

- 1. Change to the appropriate directory cd ~/Desktop
- 2. Open the parameter file for editing

gedit spherical_shell.prm

Mesh refinement

รบ	ubsec	tion Mesh refinement			
	set	Initial global refinement	=	5	
	set	Initial adaptive refinement	=	0	_
	set	Strategy	=	temperatu	ire
	set	Time steps between mesh refinement	=	0	
	set	Coarsening fraction	=	0.0	
	set	Refinement fraction	=	0.0	
er	nd				

Running the model

./aspect spherical_shell.prm

Or in parallel

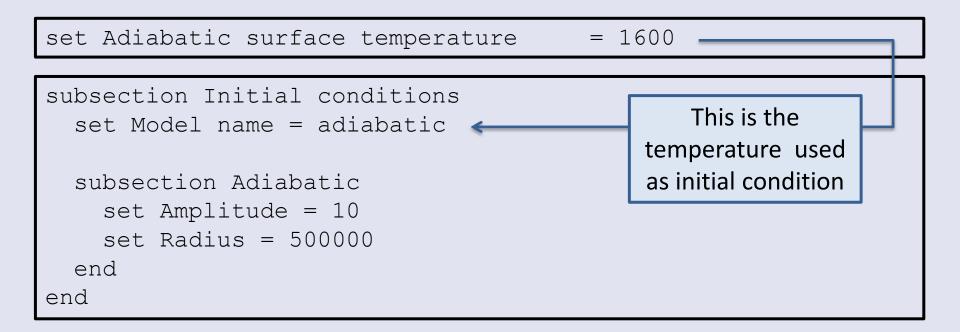
mpirun -np 2 ./aspect
 spherical_shell.prm

This is what we want to change:

- Group 1: 3
- Group 2: 4
- Group 3: 5

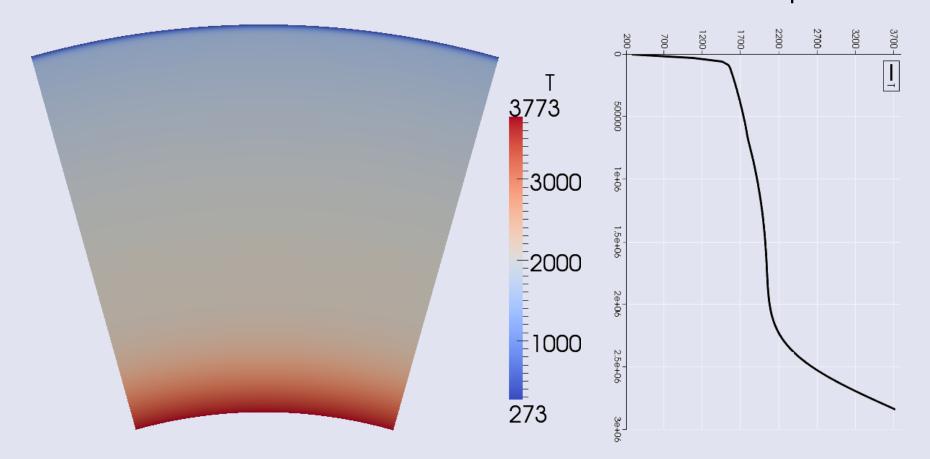
Material model

set Adiabatic surface temperature	= 1600
<pre>subsection Material model set Model name = simple subsection Simple model set Thermal expansion coefficient set Viscosity set Thermal viscosity exponent set Reference temperature end</pre>	These should be the same = 3 = 1600
end	
Temperature- dependent viscos	


Geometry & gravity model


```
subsection Geometry model
  set Model name = spherical shell
  subsection Spherical shell
    set Inner radius = 3481000
                                         The gravity model has to
    set Outer radius = 6336000
                                         be changed together with
    set Opening angle = 90
                                             the geometry
  end
end
subsection Gravity model
  set Model name = radial earth-like
end
```

Initial conditions



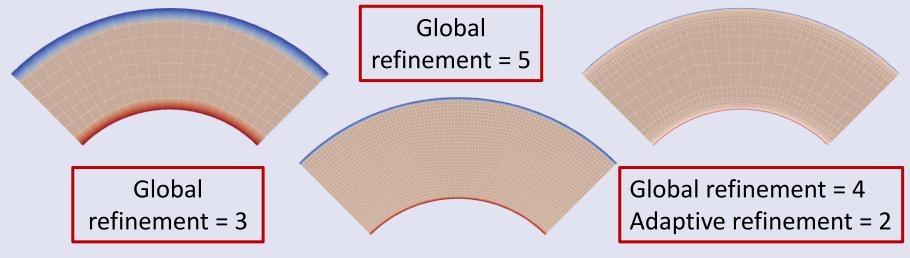
Adiabatic initial conditions

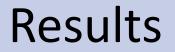
• Calculated using depth-dependent ρ , α , c_{p}

Boundary conditions

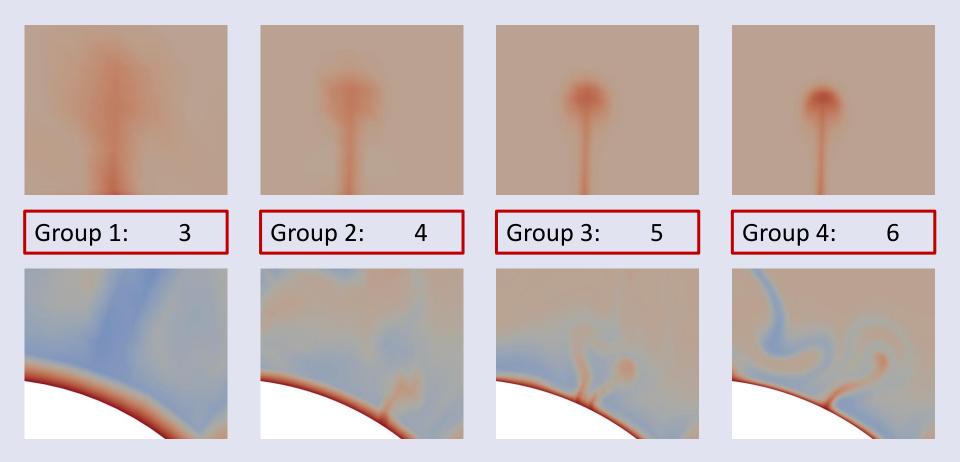
subsection Model settings	
set Zero velocity boundary indicators	= 0
set Tangential velocity boundary indicators	= 1, 2, 3
set Prescribed velocity boundary indicators	=
set Fixed temperature boundary indicators	= 0, 1
set Include shear heating	= false
set Include adiabatic heating	= false
end	

Boundary conditions



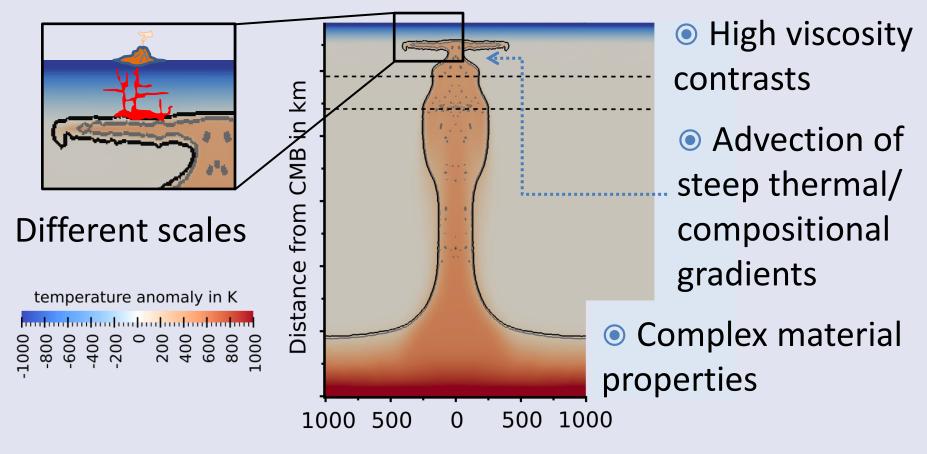

subsection Model settings	
set Zero velocity boundary indicators	= inner
set Tangential velocity boundary indicators	= outer, left,
right	
set Prescribed velocity boundary indicators	=
set Fixed temperature boundary indicators	= inner, outer
set Include shear heating	= false
set Include adiabatic heating	= false
end	

Mesh refinement


su	subsection Mesh refinement						
	set	Initial global refinement	=	5			
	set	Initial adaptive refinement	=	0			
	set	Strategy	=	temperature			
	set	Time steps between mesh refinement	=	0			
	set	Coarsening fraction	=	0.05			
	set	Refinement fraction	=	0.3			
	SCC						

Time snapshots of models with different resolution

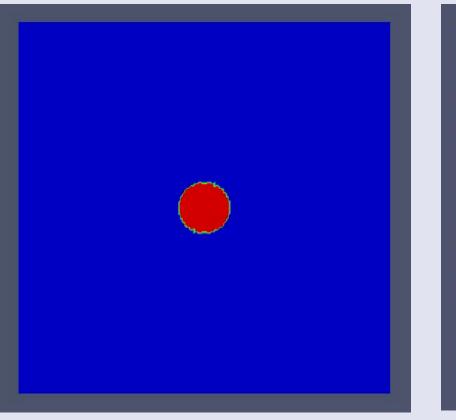
Mesh refinement



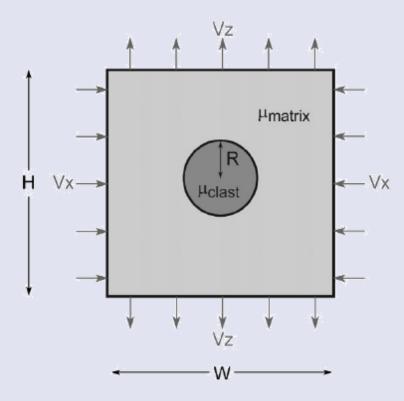
subsection Mesh r	efinement	
set Initial glo	bal refinement	= 5
set Initial ada	ptive refinement	= 0
set Strategy		= temperature
set Time steps	between mesh refinem	ient = 5
set Coarsening	fraction	= 0.05
set Refinement	fraction	= 0.3
end		
Running	This is what we want to change: • Group 1: 4 + 0 • Group 2: 5 + 0 • Group 3: 6 + 0	Set to a value > 0 to enable adaptive refinement
Running		

./aspect spherical_shell.prm

Numerical Challenges



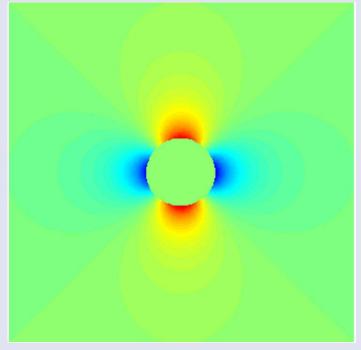
Problems with large number of DOFs


Example: Composition as refinement strategy

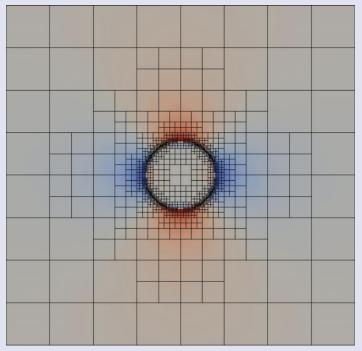
Compositional field

Mesh cells, colors indicate the estimated error

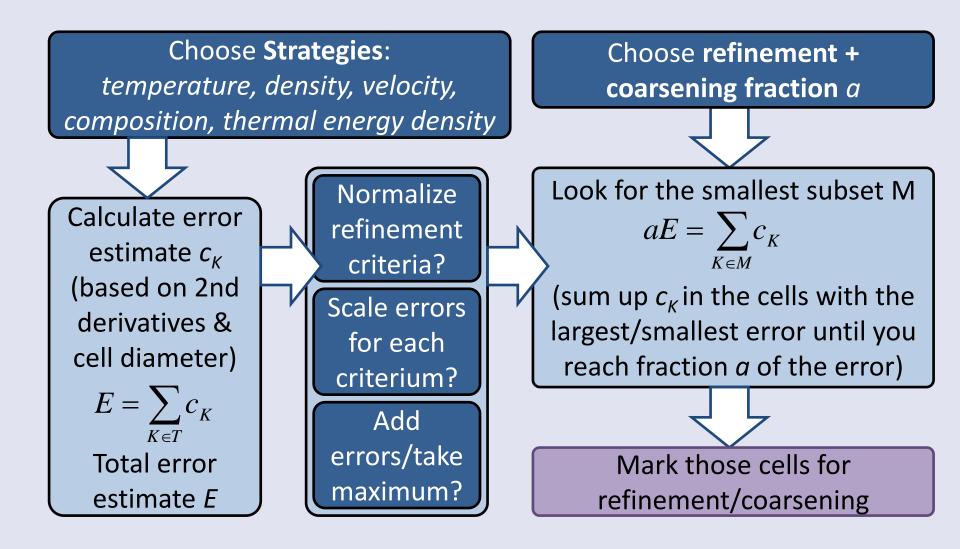
 Stokes solver for problems with complex interfaces and high viscosity ratios



Circular inclusion test, viscosity constrast 10³



Analytical Solution for Pressure:



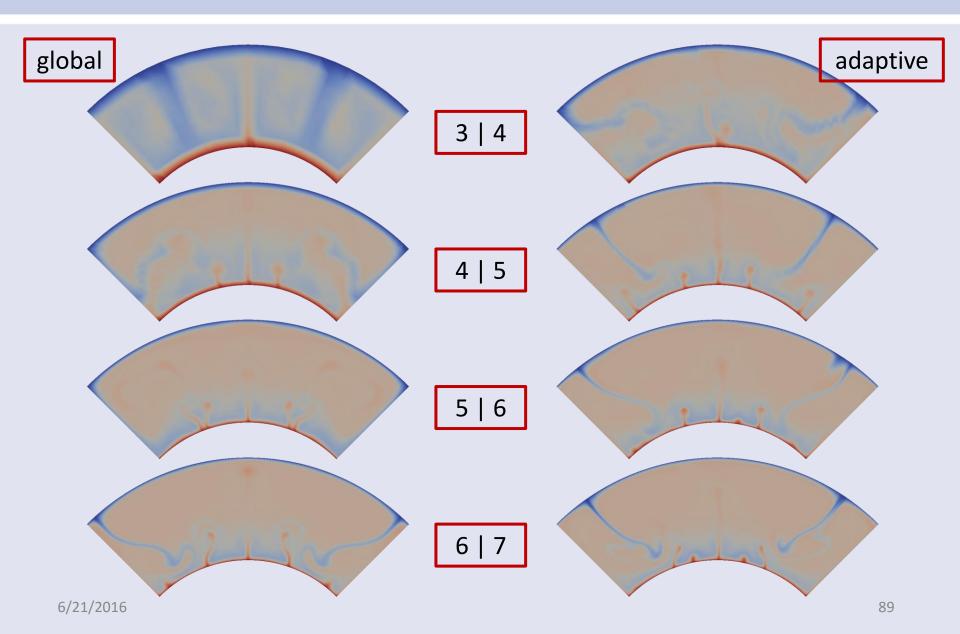
(Schmid, Podladchikov, 2003)

Aspect's solution for Pressure:

Mesh refinement options

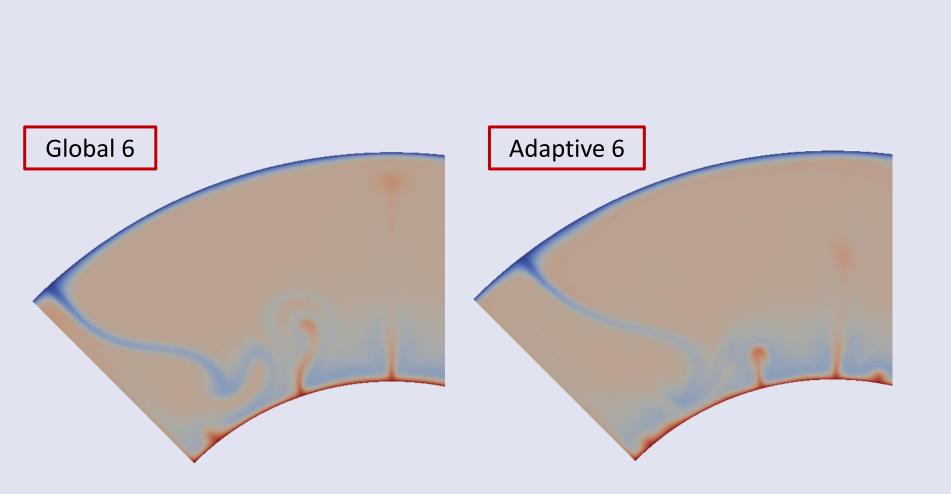
- Strategies: (nonadiabatic) temperature /pressure, composition, density, velocity, viscosity, thermal energy density...
- Refinement criteria scaling factors
- min/max refinement level function
 - Phase transitions / jump in material properties
- Additional refinement times
 - Onset of new processes (convection? melting? plate velocities?)

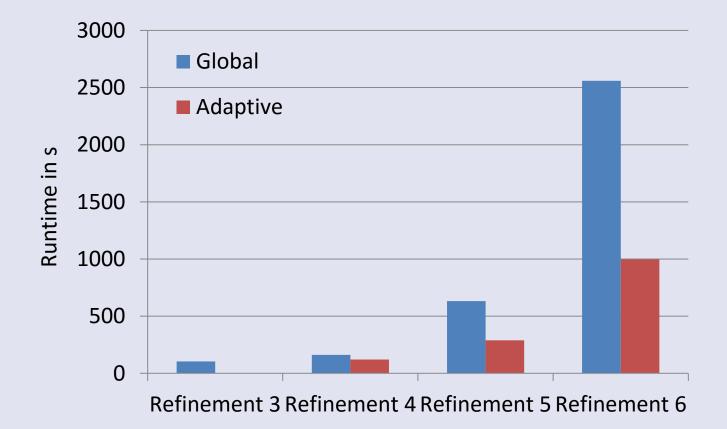
Inspecting the results


1. With Paraview

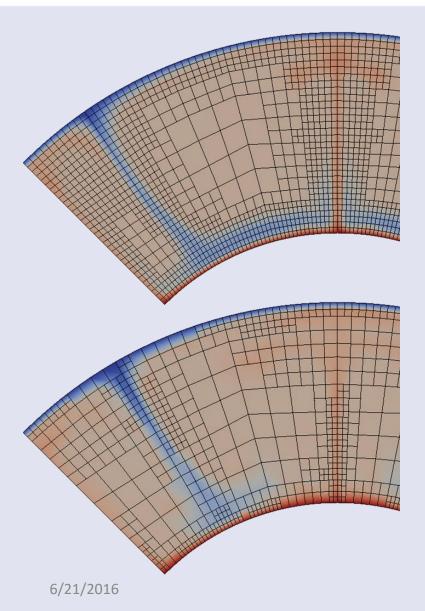

paraview

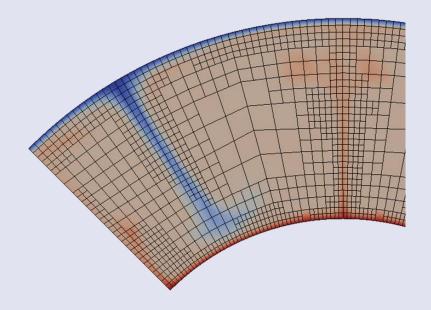
- 2. How does the flow field change with varying the resolution?
- 3. How does the runtime change with the adaptive refinement compared to global refinement?
- 4. What refinement / coarsening fraction is sufficient?


Results



Results


Mesh refinement



SU	set	-	efinement bal refinemen ptive refinem			4	
	set	Strategy	-		=	temperature	
		Time steps Refinement	between mesh fraction	refinement		5	
		Coarsening				0.05	1
end							
			This is what we change: • Group 1: • Group 2:	0.6 + 0.01	$\left.\right $		

Results

Things to play with

- Plot Nusselt number over time
- Change geometry
- Change boundary conditions
- Open manual and go through the list of cookbooks

input files are in ~/aspect-source/cookbooks