

Tutorial III Modelling Rayleigh-Taylor Instabilities

Juliane Dannberg

Overview

- At the end of this tutorial, you should be able to:
 - Set up a model with compositional heterogeneities in Aspect
 - Use Aspect's function parser
 - Set up mesh independent initial conditions
 - Know a bit more about difficulties when reproducing benchmarks ⁽³⁾

Setup: van Keken, 1997

No slip

- Geometry: Box: 0.9142 x 1
- Low-density layer at the bottom 20%, density difference: 1%
- Cosine initial perturbation to start upwelling

Tasks

- We will split the class into multiple groups identified by the mesh refinement (number of global refinements)
- You will need to:
 - modify the rayleigh_taylor.prm file to use your assigned refinement
 - 2. Run the simulation
 - 3. Visualize the results and make sure they are realistic
 - 4. report the first two peaks of root mean square velocity and their timing
 - 5. Note: to halt a simulation, press "Control-C"

Using ASPECT

- We will begin by editing the input file
- 1. Change to the appropriate directory cd ~/ASPECT_TUTORIAL/models
- 2. Open the parameter file for editing

gedit rayleigh_taylor.prm

Material model

subsection Material model set Model name = simple subsection Simple model set Viscosity = 1e2 set Thermal expansion coefficient = 0 set Density differential for compositional field 1 = -10 end end

Line 71:

```
subsection Compositional fields
set Number of fields = 1
end
```

subsection Compositional initial conditions set Model name = function subsection Function

set Variable names =

set Function constants =

set Function expression =

end

end

subsection Compositional fields set Number of fields = 1 end	Interface: 0.2+0.02*cos(pi*x/0.9142) width of box
set Model name = function subsection Function set Variable names = set Function constants = set Function expression = end end	C_1 0.75 0.5 0.25
10/28/14	12014 9

Boundary conditions

subsection Model settings				
set Include adiabatic heating	= false			
set Include shear heating	= false			
set Tangential velocity boundary	indicators = 0,1			
# left and right				
set Zero velocity boundary indic	ators = 2,3			
# botte	om and top			
end				

Resolution

The function parser

... in other modules:

- Initial temperature
- Boundary conditions (velocity & temperature)
- Heating model (radiogenic heating)
 Crust / lithosphere / mantle
- Mesh refinement (min/max refinement level)
 - Phase transitions / jump in material properties
- Gravity model
 - Moon? Mars?

Heating model

Visualizing results

1. With Paraview

paraview

2. With Gnuplot

3. What are the times and velocity values of the first two peaks in root mean square velocity?

10/28/14

GeoMod 2014

Visualizing results

Header of the "statistics" file:

- # 1: Time step number
- # 2: Time (seconds)
- # 3: Number of mesh cells
- # 4: Number of Stokes degrees of freedom
- # 5: Number of temperature degrees of freedom
- # 6: Number of degrees of freedom for all compositions
- # 7: Iterations for temperature solver
- # 8: Iterations for composition solver 1
- # 9: Iterations for Stokes solver
- # 10: Velocity iterations in Stokes preconditioner
- # 11: Schur complement iterations in Stokes preconditioner
- # 12: Time step size (seconds)
- # 13: Visualization file name

14: RMS velocity (m/s)

- # 15: Max. velocity (m/s)
- # 16: Minimal value for composition C_1
- # 17: Maximal value for composition C_1
- # 18: Global mass for composition C_1

Results

	Refinement=5	Refinement=6	Refinement=7	Refinement=8
1 st peak (time)	(???)	(???)	(???)	(???)
1 st peak (v _{rms})	(???)	(???)	(???)	(???)
2 nd peak (time)	(???)	(???)	(???)	(???)
2 nd peak (v _{rms})	(???)	(???)	(???)	(???)

Backup slide with results

	Refinement=5	Refinement=6	Refinement=7	Refinement=8
1 st peak (time)	2.1254e2	2.1017e2	2.0950e2	2.0954e2
1 st peak (v _{rms})	3.1015e-3	3.0529e-3	3.0826e-3	3.1052e-3
2 nd peak (time)	5.679e2	4.8927e2	6.3469e2	7.7013e2
2 nd peak (v _{rms})	1.0509e-3	1.1751e-3	8.9403e-4	7.7073e-4

Results

GeoMod 2014

Results

GeoMod 2014

10/28/14

Back to the initial conditions... CIG COMPUTATIONAL INFRASTRUCTURE

Change initial conditions

Set Output directory = rayleigh-taylor-smooth

subsection set Mod subsection set Var set Fur set Fur end end	n Compositional initial conditions el name = function on Function iable names = x,z nction constants = pi=3.14159 nction expression = 0.5*(1+tanh((0.2+0.0)2*cos(pi*x/0.9142))-z)/0.02))
		Approvim	ation by a

aspect rayleigh_taylor.prm

Approximation by a continuous function: Interpolation over a few grid elements using a hyperbolic tangent

Visualizing results

1. With Paraview

paraview

2. With Gnuplot

cd rayleigh-taylor-smooth gnuplot plot "statistics" using 2:14 with lines time vrms velocity

New initial conditions...

New results

	Refinement=5	Refinement=6	Refinement=7	Refinement=8
1 st peak (time)	(???)	(???)	(???)	(???)
1 st peak (v _{rms})	(???)	(???)	(???)	(???)
2 nd peak (time)	(???)	(???)	(???)	(???)
2 nd peak (v _{rms})	(???)	(???)	(???)	(???)

Backup slide with results

	Refinement=5	Refinement=6	Refinement=7	Refinement=8
1 st peak (time)	(???)	(???)	(???)	(???)
1 st peak (v _{rms})	(???)	(???)	(???)	(???)
2 nd peak (time)	(???)	(???)	(???)	(???)
2 nd peak (v _{rms})	(???)	(???)	(???)	(???)

Convergence

GeoMod 2014

Variable viscosity

GeoMod 2014

Results

