

Introduction to Numerical Modeling

Eric Heien, Louise Kellogg, Timo Heister, Wolfgang Bangerth (Katrina Arredondo, Juliane Dannberg, Rene Gassmoeller, Ian Rose)

Using the Virtual Machine

- The virtual machine has been tested on Windows, Mac, etc
- We will be showing the same setup on the projector here so you can follow along
- To start, ensure you have VirtualBox and the CIG_VM_CIDER.ova installed

Using the Virtual Machine

- In this tutorial, you will run the programs on a virtual machine
- The virtual machine and related programs are on the USB stick we have distributed
- The virtual machine is a program which simulates another computer on your computer
 - This ensures everyone has exactly the same setup, and can follow the tutorial exactly the same way
 - If you want to install ASPECT or other codes on your own machine, please refer to the manual or contact us later for details

Overview

- At the end of this tutorial, you should be able to:
 - Understand why numerical models are used
 - Describe a numerical model and the basic components of it
 - Detail some shortcomings of numerical models
 - Understand basic use of the ASPECT code
 - Edit parameters for an ASPECT simulation
 - Run an ASPECT simulation and analyze the results

Overview

- Why use numerical modeling?
- What is a numerical model?
- Setting up and using the virtual machine
- Numerical modeling with ASPECT
- Modeling the Nusselt-Rayleigh relationship

Why use numerical modeling?

Why use numerical modeling? CIG COMPUTATIONAL for GEODYNAMICS

- Some phenomenon are too far off experimentally feasible time or space scales
 - Protein folding (10⁻⁹ meters, 10⁻⁵ seconds)
 - Galactic evolution (10²⁰ meters, 10¹⁷ seconds)
 - Long term planetary dynamics (10⁶ meters, 10¹⁶ seconds)
- Since we can't create new universes or planets to study, we model them computationally
- Computational numerical models have successfully been applied in many areas of earth science
- This tutorial will teach you the basics of numerical modeling with a focus towards solid earth science

Why use numerical modeling? Clo COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

Visualization of simple convection in a spherical shell with ASPECT. Adaptive mesh is shown in the lower left and temperature isosurfaces are shown in the remainder of the shell.

Courtesy Wolfgang Bangerth

8

July 9, 2014

Why use numerical modeling? Clo COMPUTATIONAL for GEODYNAMICS

Visualization of the radial magnetic field strength at the core mantle boundary from a Calypso simulation. Courtesy Hiroaki Matsui

9

July 9, 2014

CIDER

Why use numerical modeling? Clo COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

- Each of these simulations involved approximations and tradeoffs, for example:
 - Simulation doesn't compute an infinite number of points (lower accuracy)
 - Code doesn't solve equations exactly (makes linear approximations instead)
 - Computers don't represent numbers with perfect accuracy (error creeps into results)
- We will discuss these in more detail later
- Before using numerical models, you must understand these approximations/tradeoffs and how they affect your results

Reality

- Numerical models generally consist of several key components:
 - 1. The rules (e.g. equations) for the model
 - 2. The discretization of the model
 - 3. Model parameters
 - 4. Dependent and independent variables
 - 5. The initial state of the model
 - 6. The boundary conditions

- 1. The rules (e.g. equations) for the model
 - These are generally partial different equations (PDEs) or ordinary differential equations (ODEs)

 $\nabla \cdot (\rho \mathbf{u}) = 0$ Mass conservation

$$-\nabla \cdot \left[2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right)\right] + \nabla p = \rho \mathbf{g}$$

Momentum conservation

$$F = G \frac{m_1 m_2}{r^2}$$

Gravitational attraction between bodies

- 2. The discretization of the model
 - Below shows two example meshes with related vertices connected by edges

Simple 2D 17 x 17 vertex (16 x 16 cell) square mesh

Adaptively refined 3D quarter shell mesh

3. Model parameters

- User controlled values which affect the physics, but do not change during the simulation
- Examples include material properties, simulation dimensions, physical constants, etc
- Depending on the code, some values may be parameters in one simulation but dynamic variables in another simulation
 Parameter Description
 - For example, constant static gravity or dynamically calculated based on actual density field

Parameter	Description
η	viscosity
ρ	density
g	gravity
C_p	specific heat capacity
k	thermal conductivity

Example Parameters

- 4. Dependent and independent variables
 - Will depend on the equations being solved
 - Independent variables are often related to time and space
 - Examples of dependent ASPECT variables include: temperature, velocity, pressure, density, viscosity, etc

- 5. The initial state of the model
 - Describes the dependent variables at t=0
 - This can strongly affect results, esp. in a chaotic system
 - Example: initial temperature field in ASPECT $T(x, y, t_0) = (1 - y) - pcos(\pi x)sin(\pi y)$
 - Although the perturbation (p) is just 1% of the background, a small change reverses the dynamics

- 6. The boundary conditions
 - If the domain isn't infinite, we need to define what happens on the boundaries
 - This must be done for all dependent variables, otherwise the problem is undefined
- Examples
 - Temperature
 - A box with heated bottom, cooled top
 - A mantle with heated interior, cooled exterior
 - Velocity
 - Material can/cannot flow through boundaries
 - Prescribed velocities, possibly matching plate movement (see right)

A map of the velocities predicted for a plate motion model. Plate boundaries are shown in white. (Credit: Pearson Prentice Hall.)

Using ASPECT

Using ASPECT

- Basic usage of ASPECT is specified through a parameter file
- The parameter file is used by the simulation to determine the discretization, parameters, initial conditions, boundary conditions, etc.
- By the end of this tutorial, you should be able to:
 - 1. Run aspect from the command line
 - 2. Understand the basic layout of the parameter files that are used to control Aspect simulations.
 - 3. Be able to visualize the generated output in ParaView.
 - 4. Understand the issues regarding the accuracy of simulations.

Using ASPECT

- We will begin by running ASPECT in the Terminal
- 1. Change to the appropriate directory cd ~/tutorial/aspect
- 2. Run ASPECT with the tutorial parameter file (this will take about 20 seconds) ./aspect tutorial.prm
- 3. Open the log and check the Rayleigh number gedit output/log.txt

- Numerical models generally consist of several key components:
 - 1. The rules (e.g. equations) for the model
 - 2. The discretization of the model
 - 3. Model parameters
 - 4. Dependent and independent variables
 - 5. The initial state of the model
 - 6. The boundary conditions
- We will go through the parameter file and look at these components gedit tutorial.prm

INSF

ASPECT - Equations

$$\nabla\cdot\left(\rho\mathbf{u}\right)=0~~\mathrm{Mass}~\mathrm{conservation}$$

$$-\nabla \cdot \left[2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right)\right] + \nabla p = \rho \mathbf{g} \quad \text{Momentum conservation}$$

$$\rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) - \nabla \cdot k \nabla T = \rho H$$

$$+ 2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right) : \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right)$$
Internal heat production
$$+ \frac{\partial \rho}{\partial T} T \mathbf{u} \cdot \mathbf{g}$$
Adiabatic material compression

u	velocity	$\frac{m}{s}$
p	pressure	Pa
T	temperature	K
$\varepsilon(\mathbf{u})$	strain rate	$\frac{1}{s}$
η	viscosity	$Pa \cdot s$

ρ	density	$\frac{kg}{m^3}$
g	gravity	$\frac{m}{s^2}$
C_p	specific heat capacity	$\frac{J}{kg \cdot K}$
k	thermal conductivity	$\frac{W}{m \cdot K}$
H	intrinsic specific heat production	$\frac{W}{kg}$

23

July 9, 2014

ASPECT - General

- First we look at general parameters for the simulation
- Dimension=2 specifies a two dimensional problem
- Internally, the calculations will use seconds, but the output will be represented in years
 - This helps to understand processes on Earth time scales
- End time has been set to 5x10¹⁰ years.
 - Side note: computers often use E notation, such that 2 x 10³ is written 2E3
 - Hence we write 5e10 or 5E10 rather than 5×10^{10}
- Simulation output will be stored in the directory named "output".

3 8 9 10	set set set set	Dimension Use years in output instead of seconds End time Output directory	= 2 = true = 5e10 = output		NSF
	2044			2.4	

ASPECT - Discretization

- Aspect has many built in geometry models such as "box" and "shell".
- A box is a rectangle in 2D and a cuboid in 3D.
- The width (X extent) of the box is 4.2 x 10⁶ meters and the depth (Y extent) is 3 x 10⁶ meters.
- The choice of meters as the unit of length is external to the parameter file; i.e. the user has to ensure the consistency of the various units used in the parameter file.

21	subsection Geometry model
22	set Model name = box
23	subsection Box
24	set X extent = $4.2e6$
25	set Y extent = $3e6$
26	end
27	end

ASPECT - Discretization

- Initial global refinement specifies the "grid spacing" of our mesh.
- For this tutorial, REFINE=3 or 4 or 5.
- Adaptive mesh refinement has been turned off, i.e. the mesh does not change during the simulation.

ASPECT - Model Parameters

- Aspect provides various built in material models, and a framework for users to implement custom material models.
- In this tutorial, you control the Rayleigh number with the viscosity parameter.
- There are several other parameters which control reference density, temperature dependence of viscosity, etc. These have default values shown below.

$$Ra = \frac{\rho_0 g \alpha \Delta T D^3}{\eta \kappa}$$
$$\eta = \frac{\rho_0 g \alpha \Delta T D^3}{\kappa R a}$$
$$= \frac{5.10452 \times 10^{28}}{R a}$$

Default Values

44subsection Gravity model51subsection Material model45set Model name = vertical52set Model name = simple46subsection Vertical53subsection Simple model47set Magnitude = 9.854set Viscosity = VISCOSITY48end55end49end56end	odel mple odel ISCOSITY
---	----------------------------------

July 9, 2014

ASPECT - Initial Conditions

- Aspect has initial condition models to specify the temperature initial conditions and framework for users to implement custom initial condition models.
- The function model lets us specify the initial temperature as a mathematical formula, with user defined constants.
- Here we are specifying a sinusoidal perturbation of a linear temperature profile.

$$T(x,y) = T_{top} + (T_{bottom} - T_{top})(1 - \frac{y}{D} - p\cos(\frac{k\pi x}{L})\sin(\frac{\pi y}{D})$$

Initial temperature field (p=-0.5)

69	subsection Initial conditions
70	set Model name = function
71	subsection Function
72	set Variable names = x,y
73	set Function constants = p=-0.01, L=4.2e6, D=3e6,
	pi=3.1415926536, k=1, T_top=273, T_bottom=3600
74	set Function expression = T_top + (T_bottom-T_top)*
	<pre>(1-(y/D)-p*cos(k*pi*x/L)*sin(pi*y/D))</pre>
75	end
76	end

end

94

95

96

105

115 116

117

118

119

120

121

CIDER

= 2.3

set Zero velocity boundary indicators = set Prescribed velocity boundary indicators = set Tangential velocity boundary indicators = 0, 1, 2, 3end subsection Boundary temperature model set Model name = box subsection Box set Bottom temperature = 3600 set Top temperature = 273end

86 subsection Model settings set Fixed temperature boundary indicators 87

- All boundaries (0,1,2,3) are free-slip
- front/back in 3D) If unspecified, the boundaries default to
- no heat flux (insulated)

box is fixed at 3600 K, top is 273K

ASPECT - Boundary Conditions

The temperature at the bottom of the

Depending on the model, Left and Right

options can be similarly specified (and

ASPECT - Postprocessing

- This section of the parameter file specifies how to analyze the data that has been generated.
- heat flux statistics and visualization will be used in this tutorial.
- Graphical output is generated every 1e7 simulated years
- We will also add tracer particles to better understand the flow pattern

132	subsection Postprocess
133	set List of postprocessors = velocity statistics, temperature
	statistics, heat flux statistics, visualization, tracers,
	basic statistics
134	subsection Visualization
135	set Time between graphical output = 1e7
136	set Output format = hdf5
137	end
138	subsection Tracers
139	set Number of tracers = 1000
140	set Time between data output = 1e7
141	set Data output format = hdf5
142	end
143	end

Visualizing Results with ParaView

COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

• To visualize the simulation results, we will use ParaView

- ParaView is a program for visualization of large data sets
- It is already installed on the virtual machine, open it now by clicking the icon in the left bar
- ParaView supports visualization tools such as isosurfaces, slices, streamlines, volume rendering, and other complex visualization techniques

- Start by opening solution.xdmf which was created by running ASPECT
- You can choose "Open" from the File menu or use the Open icon
 in the toolbar

	Look in:	ome/cig/tutorial/aspect/output/	•	<	> 🖉	
	Home Home	Filename particle.xdmf solution.xdmf				
form roper	output					
_		File name: solution.xdmf				ок

The file is in /home/cig/tutorial/aspect/output/

- The file will appear in the pipeline browser
 - Make sure this is solution.xdmf
- The list of properties (variables) appears in the object inspector
 - The file contains temperature (T), pressure (p), and velocity
- Click "Apply" to show the field in the view area
 - By default, the temperature field is shown

CIDFR

35

- The top toolbar has buttons to
 - change the time, shown below
 - Click the play button and watch how the temperature field changes
 - Near the end, is the temperature field static? Is the velocity field static? Is material moving?

Frame 0

36

July 9, 2014

- Open the file particle.xdmf and click "Apply"
 - The tracer particles from the simulation now appear on the temperature field
 - By default they are colored by ID change the coloring scheme to "Solid Color" to make them more visible
 - Click play again to see how material is flowing with the tracer particles
 - Even when the temperature field is static, is material flowing?
 - How would you characterize this flow pattern? Where is the upwelling material? The downwelling material?

id

Solid Color

velocity

Temperature field with tracer particles

37

CIDER

Nusselt-Rayleigh Relationship

Nusselt-Rayleigh Relationship CIG COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

- We will use ASPECT to study the relationship between the Rayleigh number and the surface heat flux
- In geodynamics, the Rayleigh number indicates the presence and strength of convection in the mantle
- The Nusselt number is the ratio of convective to conductive heat transfer
- If the Rayleigh number goes up, how does the Nusselt number change?
- How does the mesh resolution affect the accuracy of these results?

Nusselt-Rayleigh Relationship CI C COMPUTATIONAL for GEODYNAMICS

Other output is shown in "output/statistics".
 Open this file and see what sort of values are stored here.

gedit output/statistics

2. We want to see how heat flux changes over time. Plot the results in gnuplot showing simulation year vs. heat flux

gnuplot
plot "output/statistics" using 2:20 with lines;

3. What is the surface heat flux at the end of this run?

Nusselt-Rayleigh Relationship CIG COMPUTATIONAL for GEODYNAMICS

- We will split the class into multiple groups identified by the Rayleigh number, mesh refinement combination.
- You will need to:
 - 1. Modify the tutorial.prm file to use your assigned refinement, end time, and Rayleigh number
 - 2. Run the simulation
 - 3. Visualize the results and make sure they are realistic
 - 4. Calculate the Nusselt number from the heat flux

$$Nu = \frac{\frac{Q}{L}}{\frac{k\Delta T}{D}} = \frac{\frac{Q}{4.2e6}}{\frac{4.7(3600 - 273)}{3e6}} = \frac{Q}{21892}$$
July 9, 2014

Nusselt-Rayleigh Relationship CIG COMPUTATIONAL for GEODYNAMICS

	Ra=4,000	Ra=20,000	Ra=100,000	Ra=500,000
End Time	2e11	5e10	3e10	1e10
Viscosity	1.275E25	2.5522E24	5.1045E23	1.0209E23
Refine = 3	3.269	5.436	(???)	7.308
Refine = 4	3.43	5.59	4.567	14.98
Refine = 5	(???)	5.86	4.7	(???)

Nusselt-Rayleigh Answer Key Clo Computational Infrastructure for Geodynamics

	Ra=4,000	Ra=20,000	Ra=100,000	Ra=500,000
End Time	2e11	5e10	3e10	1e10
Viscosity	1.275E25	2.5522E24	5.1045E23	1.0209E23
Refine = 3	3.26	5.48	7.95	7.36
Refine = 4	3.45	5.57	8.86	14.99
Refine = 5	3.53	5.85	9.23	13.94
R=3, R=5 Diff	8.3%	6.8%	16.1%	89.4%
2.00E+01				
1.50E+01 -				finement-3
1.00E+01				finement-4
5.00E+00			Re	finement=5
0.00E+00	1	1		
	Ra=4e3 Ra=2	e4 Ra=1e5	Ra=5e5	NSF
July 9, 2014		CIDER		43

Nusselt-Rayleigh Relationship Clo Computational

- As the Rayleigh number increases, higher refinement is needed to correctly resolve the problem
- Standard measurements of Ra-Nu relationship show a power-law relationship Nu=a(Ra^b) where b is between 0.25 and 0.35

