
default

Crustal Deformation Modeling Tutorial
Running PyLith in Parallel

Brad Aagaard
Matthew Knepley
Charles Williams

June 28, 2013

default

Concepts Covered in this Session

Running PyLith in parallel
Desktop or laptop with multiple processors and/or cores
Cluster with multiple compute nodes

Optimizing PyLith performance
Building PyLith from source
Using PyLith with a queue system
PyLith parallel performance

Introduction

default

Running PyLith in Parallel

Laptop/Desktop
Reduce runtime (distribute floating point operations)
Available with binary --nodes=NUMCORES

Cluster
Reduce runtime (distribute floating point operations)
Run larger problems (distribute memory usage)
Must build from source for proper configuration
Requires additional parameters for batch submission

Running in Parallel Overview

default

How PyLith Runs in Parallel
Single Program, Multiple Data (SPMD) Parallel Processing

1 Process 0
1 Read in mesh
2 Add cohesive cells by adjusting the mesh topology
3 Partition mesh and determine vertices shared by multiple

processes
4 Distribute relevant portion of mesh to each process

2 All processes
1 OPTIONAL Each processor refines its part of the mesh
2 Each processor solves equations on its portion of the mesh,

exchanging information as necessary with its neighbors

Running in Parallel Overview

default

Optimizing PyLith Performance
Efficiency depends on choice of parameters and hardware

Output
VTK Inefficient: each process sends it data to

process 0 for writing
HDF5 Efficient: each process writes its own data in

binary
Solver performance
Quasi-static Field split with algebraic multigrid generally

scales better than Additive Schwarz
Dynamic Trivial solve scales extremely well

Overall performance
Speed of memory and connection b/t memory and CPU is
more important than CPU speed
Marginal speed improvement if you compile source for your
hardware

Running in Parallel Overview

default

Running PyLith in Parallel on a Desktop
Reduce runtime using multiple processors and/or cores

Add number of processes (usually number of cores) as argument:
pylith --nodes=NUMCORES

PyLith binary
Allows interprocess communication only within a single
computer
Works with laptops, desktops, and a single compute node

Building PyLith from source
Permits optimizing code for your hardware; may provide
modest performance gains

Running in Parallel Desktop

default

Running PyLith on a Cluster
For large quasi-static and 3-D dynamic simulations

Differences from usage on a desktop machine
Usually requires additional parameters for batch queue system
Strongly recommend using DataWriterHDF5Ext* for output

Parallel output via shared or parallel file system
More failsafe than regular HDF5 output (DataWriterHDF5*)

Stdout and stderr are written to a log file or files

Consult your system administrator on MPI parameters
Read getting started guides provided by computing centers

What compiler suites and MPI versions are available?
What filesystems are available? Which support parallel I/O?

Running in Parallel Cluster

default

Hints for Running PyLith on a Cluster
How many compute nodes and cores should I use?

General
If you have N compute nodes and want to run J jobs, use N/J
compute nodes
Use the maximum number allowable by the queue with the
shortest wait
Don’t overload a compute node (memory use exceeds that
available)
Don’t overload fileservers

Quasi-static problems
Memory use and runtime depends on the solver parameters
Memory use is often dominated by the sparse matrix
Different bulk rheologies use different amounts of memory

Dynamic problems
Don’t overload compute nodes
Spontaneous rupture uses more memory than prescribed slip

Running in Parallel Cluster

default

PyLith Parallel Performance Test
Static solution of prescribed slip on multiple faults

2.0 m

2.0 m

72
km

72 km

36
km

Parallel Performance

default

PyLith Parallel Performance Test
Field split and AMG with custom fault preconditioner performs best

Number of Iterations in Linear Solve
Preconditioner Cell Problem Size

S1 S2 S4
ASM Tet4 184 217 270

Hex8 143 179 221
Schur (full) Tet4 82 84 109

Hex8 54 60 61
Schur (upper) Tet4 79 78 87

Hex8 53 59 57
FieldSplit (add) Tet4 241 587 585

Hex8 159 193 192
FieldSplit (mult) Tet4 284 324 383

Hex8 165 177 194
FieldSplit (mult,custom) Tet4 42 48 51

Hex8 35 39 43
Parallel Performance Preconditioners

default

PyLith Parallel Performance Test
Weak scaling of field split w/AMG and custom fault preconditioner

100 101 102

Processors

10-1

100

101

102

Ti
m

e
(s

)

Hex8
Tet4

Solve
Reform Jacobian
Reform Residual

100 101 102

Processors

100

101

102

#
 It

er
at

io
ns

Parallel Performance Parallel Scaling

default

Dissecting PETSc Log Summary I
Where are the bottlenecks?

Quasi-Static Simulation
Savage-Prescott Benchmark

Summary of Stages: ----- Time ------

Avg %Total

0: Main Stage: 5.7474e+00 0.2%

1: Meshing: 1.6935e+01 0.6%

2: Setup: 1.4908e+01 0.5%

3: Reform Jacobian: 5.2058e+00 0.2%

4: Reform Residual: 1.4038e+02 5.1%

5: Solve: 2.3698e+03 85.8%

6: Prestep: 1.2892e+01 0.5%

7: Step: 6.8484e+01 2.5%

8: Poststep: 1.2611e+02 4.6%

9: Finalize: 4.6684e-01 0.0%

Dynamic Simulation
SCEC Dynamic Rupture

Benchmark TPV102
Summary of Stages: ----- Time ------

Avg %Total

0: Main Stage: 3.4975e+00 0.1%

1: Meshing: 1.5496e+02 3.6%

2: Setup: 8.6702e+01 2.0%

3: Reform Jacobian: 3.5730e+00 0.1%

4: Reform Residual: 2.5464e+03 59.6%

6: Prestep: 3.1002e+00 0.1%

7: Step: 1.2559e+03 29.4%

8: Poststep: 2.1854e+02 5.1%

9: Finalize: 1.0401e+00 0.0%

Parallel Performance Parallel Scaling

default

Dissecting PETSc Log Summary II
Identify memory bandwidth saturation and communication bottlenecks

Event # Cores Load Imbalance MFlops/s Comments
VecMDot 1 1.0 2007

2 1.1 3809
4 1.1 5431
6 1.1 5967 Memory bandwidth saturation

12 1.2 5714
24 1.2 11784 Multiple compute nodes, scaling returns
48 1.2 20958
96 1.3 17976 Inter-compute node saturation?

VecAXPY 1 1.0 1629
2 1.1 3694
4 1.1 5969
6 1.1 6028 Memory bandwidth saturation

12 1.2 5055
24 1.2 10071 Multiple compute nodes, scaling returns
48 1.2 18761
96 1.3 33676

VecMAXPY 1 1.0 1819
2 1.1 3415
4 1.1 5200
6 1.1 5860 Memory bandwidth saturation

12 1.2 6051
24 1.2 12063 Multiple compute nodes, scaling returns
48 1.2 23072
96 1.3 28461

Parallel Performance Parallel Scaling

default

PyLith v1.9 versus v2.0
Under-the-hood improvements fix some parallel scaling issues

PyLith v1.9
Reading in mesh by single process limits size of calculation
Dynamic problems with >50M cells (hex or tet)
Memory imbalance of up to 10x for large problems with faults

PyLith v2.0
Reading in mesh by single process limits size of calculation
Improved mesh data structures reduce memory use
Expect memory balancing to be very good
Expect to be able to run problems with O(108) cells

Parallel Performance Parallel Scaling

default

Building PyLith from Source
Required for PyLith to use multiple compute nodes on a cluster

Use the PyLith installer utility!!!
pylith-installer-1.9.0-0.tgz

Downloads, configures, and builds PyLith and dependencies
User selects which dependencies are needed and installer
will do some minimal checks
Insures versions, configuration, and builds are consistent
PyLith requirements
See INSTALL file in installer tarball for instructions

Running on a Cluster Building from Source

default

Submitting Jobs to PBS Queue System
PBS is one of the most common batch queue systems

PyLith uses Pyre to submit jobs directly to PBS
1 Perform minimal validation of the simulation parameters
2 Create a shell script to submit job
3 Submit job

Assumes you have already setup running jobs on the cluster

Running on a Cluster Using a Queue System

default

Submitting Jobs to PBS Queue System

Put parameters common to all jobs in
$HOME/.pyre/pylithapp/pylithapp.cfg

[pylithapp]

scheduler = pbs

[pylithapp.pbs]

Shell used for job script submitted to batch system

shell = /bin/bash

Command line arguments in qsub command

-V = Use current environment variables in batch job

-m bea = Send email when job begins, ends, or aborts

qsub-options = -V -m bea -M johndoe@university.edu

[pylithapp.launcher]

command = mpirun -np ${nodes} -machinefile ${PBS_NODEFILE}

Running on a Cluster Using a Queue System

default

Submitting Jobs to PBS Queue System

Pass job specific parameters via the command line

--nodes=NPROCS Total number of processes
--scheduler.ppn=PPN Number of processes per compute node
--job.name=NAME Name of job
--job.stdout=LOG FILE File where stdout is written

NPROCS = NCOMPUTENODES × PPN

Running on a Cluster Using a Queue System

default

Debug Launching Parallel Jobs on Queue System
Use command line help features to see commands being processed

See default and set parameters
--COMPONENT.help-properties See properties and their

values
--COMPONENT.help-components See subcomponents
pylithinfo PYLITH ARGS Dumps all parameters to

pylith parameters.txt

Submitting to the queue (scheduler)
--scheduler.help See list of properties/components

available
--scheduler.dry Dump script for batch submission to stdout
Launching job on compute nodes (launcher)
--launcher.help Total number of processes
--launcher.dry Dump launching command to stdout

Running on a Cluster Using a Queue System

	Introduction
	Running in Parallel
	Overview
	Desktop
	Cluster

	Parallel Performance
	Preconditioners
	Parallel Scaling

	Running on a Cluster
	Building from Source
	Using a Queue System

