
default

Crustal Deformation Modeling Tutorial
Spontaneous Rupture with PyLith

Brad Aagaard
Matthew Knepley
Charles Williams

June 27, 2017

default

Concepts Covered in this Session

Quasistatic simulations with spontaneous fault rupture driven by aseismic creep
Fault constitutive models

Slip-weakening
Dieterich-Ruina rate-state friction w/ageing law

Nonlinear solver parameters
Initial fault traction perturbations

Introduction

default

Fault Interface
Fault tractions couple deformation across interface

Sf+
Sf-

n

u+,T+

u-,T-

Implementation Governing Equations

default

Governing Equations
Terms in governing equation associated with fault

Tractions on fault surface are analogous to boundary tractions

. . . +

∫
ST

~φ · ~T dS −
∫
Sf+

~φ ·~l dS +

∫
Sf−

~φ ·~l dS . . . = 0

Neumann BC Fault + Fault -

Relationship between slip and relative displacement∫
Sf

~φ · (~d } − (~u+ − ~u−))dS = 0

Slip Relative Disp.

Implementation Governing Equations

default

Fault Constitutive Model
Fault constitutive model places constraints on Lagrange multipliers

Shear components of Lagrange multipliers limited by fault constitutive model

lshear ≤ Tfriction (1)

Fault friction depends on cohesion, coefficient of friction, and normal traction

Tfriction =

{
Tcohesion − µf Tnormal Tnormal ≤ 0
Tcohesion Tnormal > 0

(2)

Compression⇒ no interpenetration, opening⇒ free surface

Tnormalunormal = 0 (3)

Implementation Governing Equations

default

Solution Algorithm
Solution requires “friction sensitivity” solve in addition to nonlinear solve

1 Perform nonlinear iteration assuming no additional slip
2 Check to see if fault constitutive model is satisfied
3 If not satisfied, estimate slip required to reduce traction

1 Extract subset of system associated with the faultKn+n+ 0 LT
p

0 Kn−n− −LT
p

Lp −Lp 0

~un+

~un−

~lp

 =

~bn+

~bn−

~bp

 (4)

2 Perturb Lagrange multipliers to satisfy friction criterion
3 Inner solve to get slip producing Lagrange multiplier perturbation

Kn+n+ · ∂~un+ = −LT
p · ∂~lp, (5)

Kn−n− · ∂~un− = LT
p · ∂~lp, (6)

∂ ~dp = ∂~un+ − ∂~un− . (7)

4 Repeat
Implementation Governing Equations

default

Coming in PyLith v3.x
New fault friction formulation

Change meaning of Lagrange multiplier for fault friction
Recompute Jacobian when switching from locked to sliding
No “friction sensitivity” solve required
Much faster convergence in nonlinear solve

Implementation Governing Equations

default

Friction and Nonlinear Solver Parameters
Solver tolerances are very important

Dynamic (spontaneous rupture) fault parameters
zero tolerance Iterative solver is not exact, so need threshold to detect

nucleation of slip.
zero tolerance normal Suppress fault opening for near zero values of slip.
Linear solver must converge to tighter tolerance than fault zero tolerance for
fault to “lock”

ksp rtol Set to very small value to force absolute convergence
ksp atol Must be smaller than fault zero tolerance

Nonlinear solver tolerance should not be smaller than fault zero tolerance
snes rtol Set to very small value to force absolute convergence
snes atol Must be larger than fault zero tolerance

Implementation Governing Equations

default

Friction and Nonlinear Solver Parameters
Parameters from a typical example (see examples)

[pylithapp.problem.interfaces.fault]

zero_tolerance = 1.0e-9

zero_tolerance_normal = 1.0e-9

[pylithapp.petsc]

Linear solver tolerances

ksp_rtol = 1.0e-20

ksp_atol >/p> = 1.0e-10

Nonlinear solver tolerances

<p>snes_rtol = 1.0e-20

snes_atol = 1.0e-8

Set preconditioner for friction sensitivity solve

friction_pc_type = asm

friction_sub_pc_factor_shift_type = nonzero

Implementation Governing Equations

default

Fault Constitutive Models
PyLith contains some of the more popular fault constitutive models

Static Constant coefficient of friction
Slip-Weakening Friction decreases with slip to a lower limit
Time-Weakening Time replaces slip in slip-weakening friction

model
Rate-State Dieterich-Ruina rate-state friction with ageing

law

Some additional, less popular, fault-constitutive models with combinations of
slip-weakening and time-weakening are available for use in the SCEC Dynamic
Rupture benchmarks.

Implementation Friction Models

default

Static Friction
Fault has constant coefficient of friction

Coefficient of friction
µf = µstatic (8)

Slip continues once threshold shear traction is reached
No stick-slip behavior
Generally only used in static simulations

Implementation Friction Models

default

Slip-Weakening Friction
Fault weakens with slip until it reaches a lower limit

µf =

{
µdynamic + (1− D

D0
)(µstatic − µdynamic) D ≤ D0

µdynamic D > D0
(9)

0 1 2 3 4 5
Slip, D/D0

0.0

0.2

0.4

0.6

0.8

1.0

Co
ef

. o
f F

ric
tio

n,
 µ
f

Implementation Friction Models

default

Time-Weakening Friction
Fault weakens with time until it reaches a lower limit

µf =

{
µdynamic + (1− t

t0
)(µstatic − µdynamic) t ≤ t0

µdynamic t > t0
(10)

0 1 2 3 4 5
Time, t/t0

0.0

0.2

0.4

0.6

0.8

1.0

Co
ef

. o
f F

ric
tio

n,
 µ
f

Implementation Friction Models

default

Rate-State Friction with Ageing Law
Dieterich-Ruina rate-state friction with ageing evolution law

µf =

{
µ0 + a ln(VV0) + b ln(V0θL) V ≥ Vlinear
µ0 + a ln(VlinearV0

) + b ln(V0θL)− a(1− V
Vlinear

) V < Vlinear
(11)

dθ

dt
= 1− V θ

L
(12)

10-14 10-13 10-12 10-11 10-10 10-9 10-8 10-7

Slip Rate

0.36

0.38

0.40

0.42

0.44
Co

ef
. o

f F
ric

tio
n,

 µ
f

Implementation Friction Models

default

Spontaneous Rupture Parameters
Overview of principal components

FaultCohesiveDyn Fault object for spontaneous rupture
FrictionModel Fault constitutive model
TractPerturbation Prescribed spatial and/or temporal variation

in fault tractions
SolverNonlinear Quasi-static simulations with spontaneous

rupture require nonlinear solver

Implementation Parameters

default

Spontaneous Rupture Parameters
Example of fault parameters in a .cfg file

[pylithapp.timedependent.interfaces]

fault = pylith.faults.FaultCohesiveDyn

[pylithapp.timedependent.interfaces.fault]

friction = pylith.friction.StaticFriction

friction.label = Static friction

friction.db_properties = spatialdata.spatialdb.UniformDB

friction.db_properties.label = Static friction

friction.db_properties.values = [friction -coefficient ,cohesion]

friction.db_properties.data = [0.6 ,0.0*Pa]

traction_perturbation = pylith.faults.TractPerturbation

traction_perturbation.db_initial = spatialdata.spatialdb.SimpleDB

traction_perturbation.db_initial.label = Initial fault tractions

traction_perturbation.db_initial.iohandler.filename = spatialdb/tractions.spatialdb

Implementation Parameters

default

Quasi-static Spontaneous Ruptures

Step 5 in examples/3d/subduction does not work yet, and will likely take many
minutes to run when it does work.

New examples in examples/2d/subduction. Earthquake cycle with spontaneous
rupture driven by subducting slab.

Step05 Slip-weakening friction
Step06 Rate-state friction

examples/2d/subduction

default

Step 5: Tour of Input Files

pylithapp.cfg Parameters (mostly) common to Steps 1–6
step05.cfg Parameters specific to Step 5
fault slabtop slipweakening.spatialdb Friction properties spatial database
fault slabtop tractions.spatialdb Fault tractions spatial database

Run the simulation:
pylith step05.cfg >& step05.log &

tail -f step05.log

examples/2d/subduction

default

Step 5: Slip Profiles Versus Time
Earthquake rupture causes slip over entire fault

0 1 2 3 4 5 6
Slip (m)

0

50

100

150

200

250

300

350

D
e
p
th

 (
km

)

examples/2d/subduction

default

Step 6: Tour of Input Files

step06.cfg Parameters specific to Step 5
fault slabtop ratestate.spatialdb Friction properties spatial database

Run the simulation:
pylith step06.cfg >& step05.log &

tail -f step06.log

examples/2d/subduction

default

Step 6: Slip Profiles Versus Time
Earthquake rupture causes slip over entire fault

0 1 2 3 4 5 6
Slip (m)

0

50

100

150

200

250

300

350

D
e
p
th

 (
km

)

examples/2d/subduction

default

Spontaneous Rupture Tips
Fault friction is inherently highly nonlinear

Spontaneous rupture often localizes stresses, requiring very high resolution
meshes around fault.
Friction parameters from the laboratory are usually not numerically tractable.
You often need to regularize the friction model to obtain numerically stable
solutions.

Increase slip/time over which friction coefficient evolves.
Reduce difference between “yield” stress and sliding stress.
Reduce time step and discretization size.

examples/2d/subduction

	Introduction
	Implementation
	Governing Equations
	Friction Models
	Parameters

	examples/2d/subduction

