Crustal Deformation Modeling Tutorial Using Gravity and Initial Stresses

Charles Williams Brad Aagaard Matthew Knepley

June 27, 2017

Concepts Covered in this Session

- When are gravitational stresses necessary?
- Usage of gravitational body forces in 3D
- Usage of initial stresses
- Usage of small strain formulation in 3D
- Viscoelastic relaxation with a linear Maxwell model
- Spatial database with irregular distribution of points in 3D

NOTE: Accuracy and convergence for gravitational problems will be much improved once PyLith includes higher-order elements.

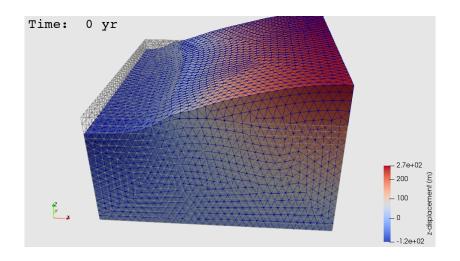
When Do We Need to Use Gravitational Stresses?

- Pressure/stress-dependent rheology
 - Pressure-dependent bulk rheology (e.g., plasticity)
 - Stress-dependent fault rheology (e.g., friction)
- Viscoelastic simulations where we care about vertical deformation
- Other simulations where we care about the absolute stress state

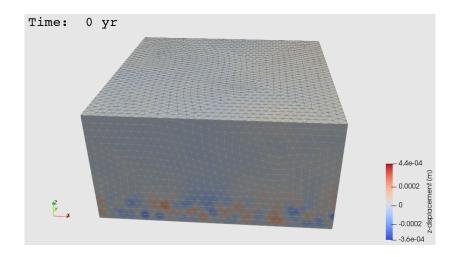
Other Gravity Examples

- 2-D examples: examples/2d/gravity
 - Steps 1-3: Body forces, initial stresses, infinitesimal strain
 - Step 1: Body forces + infinitesimal strain
 - Step 2: Body forces + infinitesimal strain + initial stress
 - Step 3: Step 2 + local density variation
 - Steps 4-7: Body forces, initial stresses, finite/infinitesimal strain with postseismic relaxation
 - Step 4: Relaxation with infinitesimal strain and no gravity
 - Step 5: Relaxation with finite strain and no gravity
 - Step 6: Relaxation with infinitesimal strain and gravity
 - Step 7: Relaxation with finite strain and gravity
 - Step 8: Usage of initial state variables and density variation
- 3-D examples: examples/3d/hex8/step15-17

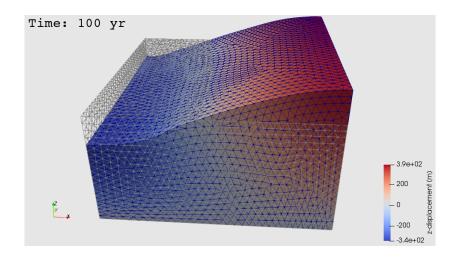
Cascadia Gravity Simulations


Files are in examples/3d/subduction None of these problems involve faulting.

- step08a Use gravitational body forces for an elastic problem and balance them with initial stresses computed for a constant mantle density.
 - Stresses are out of balance and there is significant deformation.
- Step08b Use gravitational body forces for an elastic problem and balance them with initial stresses from step08a.
 - Stresses are in balance and there is no deformation.
- Step08c Use gravitational body forces for a viscoelastic problem with finite strain and balance them with the same initial stresses as for step08b.
 - Stresses are in balance for the elastic solution but viscous flow in the time-dependent solution results in large deformations.


Step 8a

Elastic infinitesimal strain with initial stress from mantle density


Step 8b

Elastic infinitesimal strain with correct initial stress

Step 8c

Viscoelastic finite strain with correct initial elastic stress

