Crustal Deformation Modeling Tutorial

Brad Aagaard, Charles Williams, and Matthew Knepley

June 26-27, 2017

Workshop Instructors

Brad Aagaard USGS Menlo Park, CA

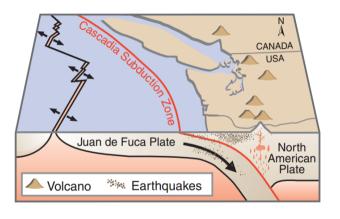
Charles Williams GNS Science Lower Hutt, NZ

Matthew Knepley Rice Univ. Houston, TX

Objectives of Tutorials

- Learn more about numerical modeling of crustal deformation
- Increase the productivity and quality of your numerical models
- Progress along the CUBIT/Trelis learning curve
- Progress along the PyLith learning curve
 - Make simple changes to examples
 - Create a simple model of your research problem of interest
- Progress along the ParaView learning curve

Overview of Tutorials


Agenda posted on geodynamics.org

Mon	Tue
Overview	Fault Friction
PyLith 2.2.1	3-D Green's Fns
Meshing	Tinker Time
Group Exercise	
	Gravity
BC & Eqs	Tinker Time
Group Exercise	PyLith v3.0
Troubleshooting	

Context of Tutorials

Examples use Cascadia Subduction Zone for realistic context

Getting Started

PyLith v2.2.1rc1 contains the examples we will be discussing

- O Download v2.2.1rc1 from https://github.com/geodynamics/pylith/releases
- If you do not have CUBIT/Trelis, download the mesh from the PyLith Wiki: https://wiki.geodynamics.org/software:pylith:cdm2017
- 3-D subduction zone example is in examples/3d/subduction

Getting Help After the Tutorial Ends

- Read the PyLith manual
- Try to work through the problem on your own
- Submit questions to cig-short@geodynamics.org
 - Describe the problem
 - Send complete output log and JSON parameters file.
- Subscribe to cig-short@geodynamics.org
 - Answers to most questions will be cc'ed to this email list
 - Short-term tectonics working group issues are posted here

What is CIG?

Computational Infrastructure for Geodynamics (www.geodynamics.org)

Objective: Develop, support, and disseminate software for the geodynamics community.

- Coordinated effort to develop reusable, well-documented, open-source geodynamics software
- Strategic partnerships with the larger world of computational science and geoinformatics
- Specialized training and workshops for both geodynamics and larger Earth-science communities

Underlying principle: Earth scientists need help from computational scientists to develop state-of-the-art modeling codes

Introduction CIG

CIG: Institution-Based Organization

Educational and not-for-profit organization

Open-organization

- Any institution seeking to collaborate on the development of open-source geodynamics software
- No cost or size requirements
- Current members
 - 61 member institutions
 - 15 foreign affiliates

CIG Working Groups

Organized by sub-disciplines

- Short-term tectonics
- Long-term tectonics
- Mantle convection
- Computational seismology
- Geodynamo
- Magma dynamics

Short-Term Tectonics Working Group

Objective: Simulate crustal deformation across spatial scales from 1 m to 10^3 km and temporal scales ranging from 0.01 s to 10^5 years .

- Formed through efforts by Brad Hager and Mark Simons before CIG started
- Strong connection to SCEC Stress and Deformation through Time (SDOT) focus group
- Building connections with SCEC Fault and Rupture Mechanics (FARM) focus group

CIG Activities

- Software development: primary activity
- Workshops
 - Sponsors workshops organized by one or more working groups
 - Holds workshops focusing on scientific computing and geodynamics
- Training in use of CIG software
 - Tutorials at workshops
 - Specialized training sessions (like this one)
- Web site: geodynamics.org
 - Distribution of software and documentation
 - Mailing lists for each working group
 - Wiki-like web pages for community involvement

CIG Software

CIG Software for Crustal Deformation

Relax

- Solves 3-D problems associated with earthquake faulting and quasi-static viscoelastic deformation
- Short-term tectonics in a homogeneous half-space where geometry does not change significantly

PyLith

- Solves 2-D and 3-D problems associated with earthquake faulting and quasi-static and dynamic viscoelastic deformation
- Short-term tectonics where geometry does not change significantly

Gale (obsolete) → Aspect

- Solves problems in orogenesis, rifting, and subduction, including free surfaces with coupling to surface erosion models
- Long-term tectonics where geometry changes significantly

Virtual Quake

 Boundary element code that simulates earthquakes on fault systems based on stress interactions

CI COMPUTATIONA
INFRASTRUCTUR
for GEODYNAMIC

Introduction CIG

Logistics

Welcome to Golden!

- Meals
 - Breakfasst and lunch are in Mines Market
 - Dinner is on your own
- All sessions are in this room
- Reimbursement: CIG and SCEC
- We are all visitors, please be respectful to our hosts!

