
default

Crustal Deformation Modeling Tutorial
PyLith Version 3

Brad Aagaard
Matthew Knepley
Charles Williams

June 27, 2017



default

PyLith v3.0

Multiphysics through pointwise integration kernels
Higher order spatial and temporal discretizations
Adaptive time stepping via PETSc TS
Improved fault formulation for spontaneous rupture (v3.1)

Introduction



default

Aside: Finite-Element Method
Strong form to weak form

Solve governing equation in integrated sense:∫
Ω
ψtrial · PDE dΩ = 0, (1)

by minimizing the error with respect to the unknown coefficients.

This leads to equations of the form:∫
Ω
ψtrial · f0(x, t) +∇ψtrial · f1(x, t) dΩ = 0. (2)

Introduction



default

Governing Equations

We want to solve equations in which the weak form can be expressed as
F (t, s, ṡ) = G(t, s) (3)

s(t0) = s0 (4)
where F and G are vector functions, t is time, and s is the solution vector.

Using the finite-element method and divergence theorem, we cast the weak form into∫
Ω

~ψtrial · ~f0(t, s, ṡ) +∇~ψtrial : f1(t, s, ṡ) dΩ =∫
Ω

~ψtrial · ~g0(t, s) +∇~ψtrial : g1(t, s) dΩ, (5)

where ~f0 and ~g0 are vectors, and f1 and g1 are tensors.

Introduction



default

Explicit Time Stepping

Explicit time stepping with the PETSc TS requires F (t, s, ṡ) = ṡ.

Normally F (t, s, ṡ) contains the inertial term (ρü).

Therefore, when using explicit time stepping we transform our equation into the form:
F ∗(t, s, ṡ) = ṡ = G∗(t, s) (6)

ṡ = M−1G(t, s). (7)

Introduction



default

Solving the Equations
Explicit time stepping requires a subset of the terms used in implicit time stepping.

PETSc TS object provides time-stepping and solver implementations
Application code provides functions for computing RHS and LHS residuals and
Jacobians

Explicit time stepping
Compute RHS residual, G(t, s)
Compute lumped inverse of LHS, M−1

No need to compute LHS residual, because F (t, s, ṡ) = ṡ

Implicit time stepping (Krylov solvers)
Compute RHS residual, G(t, s)
Compute LHS residual, F (t, s, ṡ)
Compute RHS Jacobian, JG = ∂G

∂s

Compute LHS Jacobian, JF = ∂F
∂s + tshift

∂F
∂ṡ

Introduction



default

Example: Elasticity

ρ
∂2~u

∂t2
= ~f(~x, t) + ∇ · σ(~u) in Ω, (8)

σ · ~n = ~τ(~x, t) on Ωτ , (9)
~u = ~u0(~x, t) on Ωu, (10)

Implicit Time Stepping without Inertia
Displacement ~u is the unknown, ~s = ~u.

0︸︷︷︸
~fu0

=

∫
Ω

~ψutrial · ~f(~x, t)︸ ︷︷ ︸
~gu0

+∇~ψutrial : −σ(~u)︸ ︷︷ ︸
gu1

dΩ +

∫
Ωτ

~ψutrial · ~τ(~x, t)︸ ︷︷ ︸
~gu0

dΩτ (11)

Different constitutive models are encapsulated in alternative kernels for σ(~u).

Introduction



default

Example: Elasticity (continued)

Explicit Time Stepping with Inertia
Form a first order equation using displacement ~u and velocity ~v as unknowns,
~sT =

(
~u ~v

)T∫
Ω

~ψutrial ·
∂~u

∂t︸︷︷︸
u̇

dΩ =

∫
Ω

~ψutrial · ~v︸︷︷︸
~gu0

dΩ, (12)

∫
Ω

~ψvtrial ·
∂~v

∂t︸︷︷︸
v̇

dΩ =
1

~m

∫
Ω

~ψvtrial · ~f(~x, t)︸ ︷︷ ︸
~gv0

+∇~ψvtrial : −σ(~u)︸ ︷︷ ︸
gv1

dΩ +

∫
Ωτ

~ψvtrial · ~τ(~x, t)︸ ︷︷ ︸
~gv0

dΩτ

 ,

(13)

~m =

∫
Ω

~ψvtrial · ρ︸︷︷︸
Jvvf0

~ψvbasis dΩ (14)

Introduction



default

Example: Elasticity (continued)
Implementing the governing equations involves a small set of simple kernels.

Implicit Explicit
~v – ~gv0

~f(~x, t) ~gu0 ~gv0
−σ(~u) gu1 gv1
~τ(~x, t) ~gu0 ~gv0
~0 ~fu0 –
ρ – Juvf0

We also have simple kernels for the Jacobians needed in implicit time stepping.

Introduction



default

Example: Elasticity Stress Kernels for Residual

Volumetric Stress
for (i=0; i < _dim; ++i) {

trace += disp_x[i] - initialstrain[i*_dim+i];

meanistress += initialstress[i*_dim+i];

}

meanistress /= (PylithReal) _dim;

for (i = 0; i < _dim; ++i) {

stress[i*_dim+i] += lambda * trace + meanistress;

}

Deviatoric Stress
for (i=0; i < _dim; ++i) {

meanistress += initialstress[i*_dim+i];

}

meanistress /= (PylithReal) _dim;

for (i=0; i < _dim; ++i) {

for (j=0; j < _dim; ++j) {

stress[i*_dim+j] += mu * (disp_x[i*_dim+j] + disp_x[j*_dim+i]

- initialstrain[i*_dim+j]) + initialstress[i*_dim+j];

}

stress[i*_dim+i] -= meanistress;

}

Introduction



default

Example: Poroelasticity Neglecting Inertia

We assume a compressible fluid completely saturates a porous solid undergoing
infinitesimal strain.
Elasticity equilibrium equation neglecting inertia:

0 = ~f(~x, t) + ∇ · σ(~u, pf ) in Ω, σ · ~n = ~τ(~x, t) on Ωτ , ~u = ~u0(~x, t) on Ωu, (15)
Mass balance of the fluid:
∂ζ(~u, pf )

∂t
= γ(~x, t)−∇ · ~q(pf ) in Ω, ~q · ~n = q0(~x, t) on Ωq, pf = p0(~x, t) on Ωp, (16)

Darcy’s law:

~q(pf ) = −κ(∇pf − ~ff ), κ =
k

ηf
(17)

Constitutive behavior of the fluid:

ζ(~u, pf ) = α(∇ · ~u) +
pf
M
,

1

M
=
α− φ
Ks

+
φ

Kf
, (18)

Constitutive behavior of the solid (linear elasticity):
σ(~u, pf ) = C : ε− αpfI (19)

Introduction



default

Example: Poroelasticity Neglecting Inertia

Consider displacement ~u and fluid pressure pf as unknowns, ~sT =
(
~u pf

)T
0︸︷︷︸
~fu0

=

∫
Ω

~ψutrial · ~f(~x, t)︸ ︷︷ ︸
~gu0

+∇~ψutrial : −σ(~u, pf )︸ ︷︷ ︸
gu1

dΩ +

∫
Ωτ

~ψutrial · ~τ(~x, t)︸ ︷︷ ︸
~gu0

dΩτ ,

(20)∫
Ω
ψptrial

∂ζ(~u, pf )

∂t︸ ︷︷ ︸
fp0

dΩ =

∫
Ω
ψptrialγ(~x, t)︸ ︷︷ ︸

gp0

+∇ψptrial · ~q(pf )︸ ︷︷ ︸
~fp1

dΩ +

∫
Ωq

ψptrial (−q0(~x, t))︸ ︷︷ ︸
gp0

dΩq.

(21)
Poroelasticity involves many of the same kernels as elasticity plus a few additional
ones.

Introduction



default

Finite-Element Discretization
Specify discretizations for solution fields and auxiliary fields

Solution Fields
Specify basis functions and quadrature for each field in solution.
Auxiliary Fields

Fields associated with parameters and state variables for constitutive models &
boundary conditions.
Populated from spatial databases.
Specify basis functions for each subfield in the auxiliary fields.

PETSc DMPlex infrastructure unpacks/packs information to/from solution and
auxiliary fields and calling finite-element kernels.

Introduction



default

Summary of Multiphysics Implementation

We decouple the element definition from the fully-coupled equation, using pointwise
kernels that look like the PDE.

Flexibility The cell traversal, handled by the library, accommodates arbitrary cell
shapes. The problem can be posed in any spatial dimension with an
arbitrary number of physical fields.

Extensibility The library developer needs to maintain only a single method, easing
language transitions (CUDA, OpenCL). A new discretization scheme
could be enabled in a single place in the code.

Efficiency Only a single routine needs to be optimized. The application scientist is
no longer responsible for proper vectorization, tiling, and other traversal
optimization.

Introduction


	Introduction

