Crustal Deformation Modeling Tutorial

Using Gravity and Initial Stresses

Charles Williams Brad Aagaard Matthew Knepley

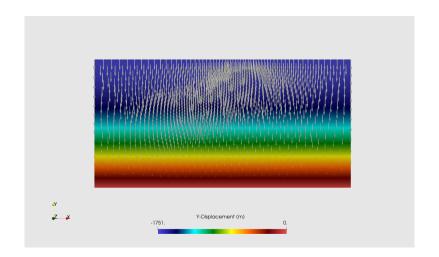
June 11, 2019

Concepts Covered in this Session

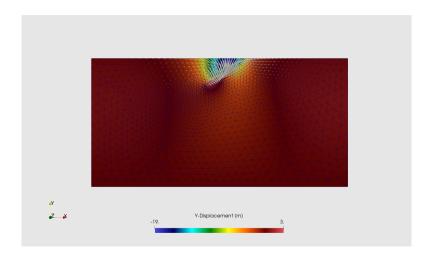
- When are gravitational stresses necessary?
- Usage of gravitational body forces in 2D
- Usage of reference stresses to balance body forces
- Usage of incompressible elasticity to achieve a reference state
- Usage of traction boundary conditions to represent a surface load

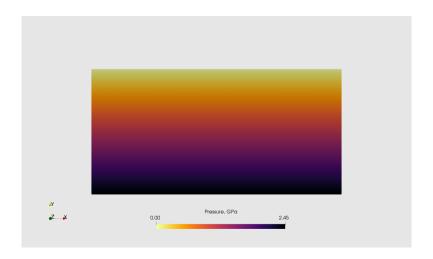
When Do We Need to Use Gravitational Stresses?

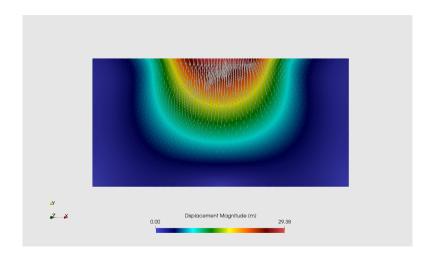
- Pressure/stress-dependent rheology
 - Pressure-dependent bulk rheology (e.g., plasticity)
 - Stress-dependent fault rheology (e.g., friction)
- Viscoelastic simulations where we care about vertical deformation
- Other simulations where we care about the absolute stress state


Two-dimensional Gravity Simulations

Files are in examples/2d/reverse. None of these problems involve faulting.


- step01 Use gravitational body forces with no reference stresses.
 - Entire domain deforms vertically since material is compressible.
- Step02 Use gravitational body forces and balance them with analytically-determined reference stresses.
 - Stresses are reasonably-well balanced and there is much less deformation.
- Step03 Use gravitational body forces for an incompressible elastic material.
 - Stresses are nearly isotropic and there is virtually no deformation.
- step04 Use traction boundary conditions to represent a surface load.
 - Primarily vertical deformation centered beneath the applied load.


Gravitational body forces applied to elastic material


Gravitational body forces with reference stress

Gravitational body forces applied to incompressible elastic material

Normal tractions applied to simulate a surface load

