Crustal Deformation Modeling Tutorial

Brad Aagaard, Charles Williams, and Matthew Knepley

June 10-11, 2019

Workshop Instructors

Brad Aagaard USGS Menlo Park, CA

Charles Williams GNS Science Lower Hutt, NZ

Matthew Knepley Univ. of Buffalo Buffalo, NY

Objectives of Tutorials

- Learn more about numerical modeling of crustal deformation
- Increase the productivity and quality of your numerical models
- Progress along the CUBIT/Trelis learning curve
- Progress along the PyLith learning curve
 - Make simple changes to examples
 - Create a simple model of your research problem of interest
- Progress along the ParaView learning curve

Introduction Agenda

Overview of Tutorials

Agenda posted on geodynamics.org

Mon	Tue
Overview	Faults
PyLith 3.0	Tinker Time
Meshing I	Gravity
Group Exercise	
	Tinker Time
Mats & BCs	Troubleshooting II
Group Exercise	Tinker Time
Troubleshooting I	Meshing II

Introduction Agenda

Getting Started

PyLith v3.0.0beta1 contains the examples we will be discussing

Download v3.0.0beta1 from https://github.com/geodynamics/pylith/releases

Introduction Agenda

What is CIG?

Computational Infrastructure for Geodynamics (www.geodynamics.org)

Objective: Develop, support, and disseminate software for the geodynamics community.

- Coordinated effort to develop reusable, well-documented, open-source geodynamics software
- Strategic partnerships with the larger world of computational science and geoinformatics
- Specialized training and workshops for both geodynamics and larger Earth-science communities

Underlying principle: Earth scientists need help from computational scientists to develop state-of-the-art modeling codes

CIG: Institution-Based Organization

Educational and not-for-profit organization

Open-organization

- Any institution seeking to collaborate on the development of open-source geodynamics software
- No cost or size requirements
- Current members
 - 61 member institutions
 - 15 foreign affiliates

CIG Working Groups

Organized by sub-disciplines

- Short-term tectonics
- Long-term tectonics
- Mantle convection
- Computational seismology
- Geodynamo
- Magma dynamics

Short-Term Tectonics Working Group

Objective: Simulate crustal deformation across spatial scales from $1~{\rm m}$ to $10^3~{\rm km}$ and temporal scales ranging from $0.01~{\rm s}$ to $10^5~{\rm years}$.

- Formed through efforts by Brad Hager and Mark Simons before CIG started
- Strong connection to SCEC Stress and Deformation through Time (SDOT) focus group
- Building connections with SCEC Fault and Rupture Mechanics (FARM) focus group

CIG Activities

- Software development: primary activity
- Workshops
 - Sponsors workshops organized by one or more working groups
 - Holds workshops focusing on scientific computing and geodynamics
- Training in use of CIG software
 - Tutorials at workshops
 - Specialized training sessions (like this one)
- Web site: geodynamics.org
 - Distribution of software and documentation
 - Mailing lists for each working group
 - Wiki-like web pages for community involvement

CIG Software

С

CIG Software for Crustal Deformation

Relax

- Solves 3-D problems associated with earthquake faulting and quasi-static viscoelastic deformation
- Short-term tectonics in a homogeneous half-space where geometry does not change significantly

PyLith

- Solves 2-D and 3-D problems associated with earthquake faulting and quasi-static and dynamic viscoelastic deformation
- Short-term tectonics where geometry does not change significantly
- Gale (obsolete) → Aspect
 - Solves problems in orogenesis, rifting, and subduction, including free surfaces with coupling to surface erosion models
 - Long-term tectonics where geometry changes significantly
- Virtual Quake
 - Boundary element code that simulates earthquakes on fault systems based on stress interactions

CI COMPUTATIONA INFRASTRUCTURE for GEODYNAMIC

Introduction CI

Logistics

Welcome to Golden!

- Meals
 - Breakfast and lunch are in Mines Market
 - Dinner is on your own
- All sessions are in this room
- Reimbursement: CIG and SCEC
- We are all visitors, please be respectful to our hosts!

