
default

Introduction to PyLith v3.0

Brad Aagaard

June 10, 2019

default

PyLith
A modern, community-driven code for crustal deformation modeling

Developers
Brad Aagaard (USGS)
Matthew Knepley (Univ. of Buffalo)
Charles Williams (GNS Science)

Combined dynamic modeling capabilities of EqSim (Aagaard) with the
quasi-static modeling capabilities of Tecton (Williams)
Use modern software engineering to develop an open-source, community code

Modular design
Testing
Documentation
Distribution

PyLith v1.0 was released in 2007

Introduction

default

Crustal Deformation Modeling
Elasticity problems where geometry does not change significantly

Quasi-static modeling associated with earthquakes

Strain accumulation associated with interseismic deformation
What is the stressing rate on faults X and Y?
Where is strain accumulating in the crust?

Coseismic stress changes and fault slip
What was the slip distribution in earthquake A?
How did earthquake A change the stresses on faults X and Y?

Postseismic relaxation of the crust
What rheology is consistent with observed postseismic deformation?
Can aseismic creep or afterslip explain the deformation?

Introduction

default

Crustal Deformation Modeling
Elasticity problems where geometry does not change significantly

Dynamic modeling associated with earthquakes

Modeling of strong ground motions
Forecasting the amplitude and spatial variation in ground motion for scenario
earthquakes

Coseismic stress changes and fault slip
How did earthquake A change the stresses on faults X and Y?

Earthquake rupture behavior
What fault constitutive models/parameters are consistent with the observed rupture
propagation in earthquake A?

Introduction

default

Crustal Deformation Modeling
Elasticity problems where geometry does not change significantly

Volcanic deformation associated with magma chambers and/or dikes
Inflation

What is the geometry of the magma chamber?
What is the potential for an eruption?

Eruption
Where is the deformation occurring?
What is the ongoing potential for an eruption?

Dike intrusions
What is the geometry of the intrusion?
What is the pressure change and/or amount of opening/dilatation?

Introduction

default

Crustal Deformation Modeling
Overview of workflow for typical research problem

Geologic
Structure

Mesh
Generation

Physics
Code Visualization

Gocad

Earth Vision

CUBIT/Trelis

LaGriT

TetGen

Gmsh

PyLith

Relax

GeoFEST

Abaqus

ParaView

Visit

Matlab

Matplotlib

GMT

CIG

Open Source

Free

Commercial

Available

Planned

Introduction

default

PyLith v3.0

Multiphysics formulation through point-wise integration kernels
Higher order spatial and temporal discretizations
Adaptive time stepping via PETSc TS
Improved fault formulation for spontaneous rupture (coming in v3.1)
Many other small changes

PyLith v3.0

default

Aside: Finite-Element Method
Strong form to weak form

Solve governing equation in integrated sense:∫
Ω
ψtrial · PDE dΩ = 0, (1)

by minimizing the error with respect to the unknown coefficients.

This leads to equations of the form:∫
Ω
ψtrial · f0(x, t) +∇ψtrial · f1(x, t) dΩ = 0. (2)

PyLith v3.0

default

Governing Equations

We want to solve equations in which the weak form can be expressed as
F (t, s, ṡ) = G(t, s) (3)

s(t0) = s0 (4)
where F and G are vector functions, t is time, and s is the solution vector.

Using the finite-element method and divergence theorem, we cast the weak form into∫
Ω

~ψtrial · ~f0(t, s, ṡ) +∇~ψtrial : f1(t, s, ṡ) dΩ =∫
Ω

~ψtrial · ~g0(t, s) +∇~ψtrial : g1(t, s) dΩ, (5)

where ~f0 and ~g0 are vectors, and f1 and g1 are tensors.

PyLith v3.0

default

Explicit Time Stepping

Explicit time stepping with the PETSc TS requires F (t, s, ṡ) = ṡ.

Normally F (t, s, ṡ) contains the inertial term (ρü).

Therefore, we transform our equation into the form:
F ∗(t, s, ṡ) = ṡ = G∗(t, s) (6)

ṡ = M−1G(t, s). (7)

PyLith v3.0

default

Solving the Equations
Explicit time stepping requires a subset of the terms used in implicit time stepping.

PETSc TS object provides time-stepping and solver implementations
Application code provides functions for computing RHS and LHS residuals and
Jacobians

Explicit time stepping
Compute RHS residual, G(t, s)
Compute lumped inverse of LHS, M−1

No need to compute LHS residual, because F (t, s, ṡ) = ṡ

Implicit time stepping (Krylov solvers)
Compute RHS residual, G(t, s)
Compute LHS residual, F (t, s, ṡ)
Compute RHS Jacobian, JG = ∂G

∂s

Compute LHS Jacobian, JF = ∂F
∂s + stshift

∂F
∂ṡ

PyLith v3.0

default

Example: Elasticity with Prescribed Slip
Use domain decomposition and Lagrange multipliers to prescribe slip

Implicit time stepping without inertia

~sT = (~u ~λ)T , (8)
~0 = ~f(~x, t) + ∇ · σ(~u) in Ω, (9)

σ · ~n = ~τ(~x, t) on Γτ , (10)
~u = ~u0(~x, t) on Γu, (11)
~0 = ~d(~x, t)− ~u+(~x, t) + ~u−(~x, t) on Γf , (12)

σ · ~n = −~λ(~x, t) on Γf+ , (13)

σ · ~n = +~λ(~x, t) on Γf− . (14)

Governing Equations Elasticity

default

Example: Elasticity with Prescribed Slip (cont.)

We create the weak form by taking the dot product with the trial function ~ψutrial or
~ψλtrial and integrating over the domain:

0 =

∫
Ω

~ψutrial ·
(
~f(t) + ∇ · σ(~u)

)
dΩ, (15)

0 =

∫
Γf

~ψλtrial ·
(
~d(~x, t)− ~u+(~x, t) + ~u−(~x, t)

)
dΓ. (16)

Using the divergence theorem and incorporating the Neumann boundary and fault
interface conditions, we can rewrite the first equation as

0 =

∫
Ω

~ψutrial · ~f(t) +∇~ψutrial : −σ(~u) dΩ +

∫
Γτ

~ψutrial · ~τ(~x, t) dΓ

+

∫
Γf

~ψu
+

trial · −~λ(~x, t) + ~ψu
−

trial ·+~λ(~x, t) dΓ.
(17)

Governing Equations Elasticity

default

Example: Elasticity with Prescribed Slip (cont.)

Identifying F (t, s, ṡ) and G(t, s), we have
F u(t, s, ṡ) = 0, (18)

F λ(t, s, ṡ) = 0, (19)

Gu(t, s) =

∫
Ω

~ψutrial · ~f(~x, t)︸ ︷︷ ︸
gu0

+∇~ψutrial : −σ(~u)︸ ︷︷ ︸
gu1

dΩ (20)

+

∫
Γτ

~ψutrial · ~τ(~x, t)︸ ︷︷ ︸
gu0

dΓ +

∫
Γf

~ψu
+

trial · −~λ(~x, t)︸ ︷︷ ︸
gu

+

0

+ ~ψu
−

trial ·+~λ(~x, t)︸ ︷︷ ︸
gu

−
0

dΓ, (21)

Gλ(t, s) =

∫
Γf

~ψλtrial ·
(
~d(~x, t)− ~u+(~x, t) + ~u−(~x, t)

)
︸ ︷︷ ︸

gλ0

dΓ. (22)

Governing Equations Elasticity

default

Example: Elasticity with Prescribed Slip (cont.)

JuuG =
∂Gu

∂u
=

∫
Ω
∇~ψutrial :

∂

∂u
(−σ) dΩ =

∫
Ω
∇~ψutrial : −C :

1

2
(∇+∇T)~ψubasis dΩ

=

∫
Ω
ψvtrial i,k (−Cikjl)︸ ︷︷ ︸

Juug3

ψubasis j,l dΩ
(23)

JuλG =
∂Gu

∂λ
=

∫
Γf+

~ψutrial ·
∂

∂λ
(−~λ) dΓ +

∫
Γf−

~ψutrial ·
∂

∂λ
(+~λ) dΓ

=

∫
Γf

ψu
+

trial i −1︸︷︷︸
Ju

+λ
g0

ψλbasis j + ψu
−

trial i +1︸︷︷︸
Ju

−λ
g0

ψλbasis j dΓ
(24)

JλuG =
∂Gλ

∂u
=

∫
Γf

~ψλtrial ·
∂

∂u

(
~d(~x, t)− ~u+(~x, t) + ~u−(~x, t)

)
dΓ

=

∫
Γf

ψλtrial i(−1︸︷︷︸
Jλu

+

g0

)ψu
+

basis j + ψλtrial i(+1︸︷︷︸
Jλu

−
g0

)ψu
−

basis j dΓ
(25)

JλλG = 0 (26)
Governing Equations Elasticity

default

Example: Incompressible Elasticity

Implicit time stepping without inertia
~sT = (~u p)T , (27)

~0 = ~f(t) + ∇ ·
(
σdev (~u)− pI

)
in Ω, (28)

0 = ~∇ · ~u+
p

K
, (29)

σ · ~n = ~τ on Γτ , (30)
~u = ~u0 on Γu, (31)
p = p0 on Γp. (32)

Governing Equations Incompressible Elasticity

default

Example: Incompressible Elasticity (cont.)

Using trial functions ~ψutrial and ψptrial and incorporating the Neumann boundary
conditions:

0 =

∫
Ω

~ψutrial · ~f(t) +∇~ψutrial :
(
−σdev (~u) + pI

)
dΩ +

∫
Γτ

~ψutrial · ~τ(t) dΓ, (33)

0 =

∫
Ω
ψptrial ·

(
~∇ · ~u+

p

K

)
dΩ. (34)

Identifying G(t, s), we have

0 =

∫
Ω

~ψutrial · ~f(t)︸︷︷︸
gu0

+∇~ψutrial :
(
−σdev (~u) + pI

)
︸ ︷︷ ︸

gu1

dΩ +

∫
Γτ

~ψutrial · ~τ(t)︸︷︷︸
gu0

dΓ, (35)

0 =

∫
Ω
ψptrial ·

(
~∇ · ~u+

p

K

)
︸ ︷︷ ︸

gp0

dΩ. (36)

Governing Equations Incompressible Elasticity

default

Example: Incompressible Elasticity (cont.)

With two fields we have four Jacobians for the RHS associated with the coupling of
the two fields.

JuuG =
∂Gu

∂u
=

∫
Ω
∇~ψutrial :

∂

∂u
(−σdev) dΩ =

∫
Ω
ψutrial i,k

(
−Cdev

ikjl

)
︸ ︷︷ ︸

Juug3

ψubasis j,l dΩ (37)

JupG =
∂Gu

∂p
=

∫
Ω
∇~ψutrial : Iψpbasis dΩ =

∫
Ω
ψutrial i,k δik︸︷︷︸

Jupg2

ψpbasis dΩ (38)

JpuG =
∂Gp

∂u
=

∫
Ω
ψptrial

(
~∇ · ~ψubasis

)
dΩ =

∫
Ω
ψptrial δjl︸︷︷︸

Jpug1

ψubasis j,l dΩ (39)

JppG =
∂Gp

∂p
=

∫
Ω
ψptrial

1

K︸︷︷︸
Jppg0

ψpbasis dΩ (40)

Governing Equations Incompressible Elasticity

default

Summary of Multiphysics Implementation

We decouple the element definition from the fully-coupled equation, using pointwise
kernels that look like the PDE.

Flexibility The cell traversal, handled by the library, accommodates arbitrary cell
shapes. The problem can be posed in any spatial dimension with an
arbitrary number of physical fields.

Extensibility The library developer needs to maintain only a single method, easing
language transitions (CUDA, OpenCL). A new discretization scheme
could be enabled in a single place in the code.

Efficiency Only a single routine needs to be optimized. The application scientist is
no longer responsible for proper vectorization, tiling, and other traversal
optimization.

Governing Equations Incompressible Elasticity

default

Overview of PyLith Workflow

PyLith

Mesh Generator Simulation Parameters

Visualization

Post-processing

CUBIT / Trelis

Exodus file [.exo]

LaGriT

GMV File [.gmv]

Pset File [.pset]

Text Editor

ASCII File [.mesh]

Text Editor

Parameter

File(s) [.cfg]

Spatial

Database(s)

[.spatialdb]

VTK File(s) [.vtk]

HDF5 File(s) [.h5]

Xdmf File(s)

[.xmf]

ParaView Visit

Python w/h5py

Matlab

Using PyLith

default

PyLith as a Hierarchy of Components
Components are the basic building blocks

Separate functionality into discrete
modules (components)
Alternative implementations use the
same interfaces to allow plug-n-play
Top-level interfaces in Python with
computational code in C++

Python dynamic typing permits adding
new modules at runtime.
Users can add functionality without
modifying the PyLith code.

���������

������

����

���

����������

����������

������������������

����������

��������

Using PyLith

default

Parameter Files
Simple syntax for specifying parameters for properties and components

Syntax

[pylithapp.COMPONENT.SUBCOMPONENT] ; Inline comment

COMPONENT = OBJECT

PARAMETER = VALUE

Example

[pylithapp.mesh_generator] ; Header indicates path of mesh_generator in hierarchy

reader = pylith.meshio.MeshIOCubit ; Use mesh from CUBIT/Trelis

reader.filename = mesh_quad4.exo ; Set filename of mesh.

reader.coordsys.space_dim = 2 ; Set coordinate system of mesh.

[pylithapp.problem.solution_outputs.output] ; Set output format

writer = pylith.meshio.DataWriterHDF5

writer.filename = axialdisp.h5

[pylithapp.problem]

bc = [x_neg , x_pos , y_neg] ; Create array of boundary conditions

bc.x_neg = pylith.bc.DirichletTimeDependent ; Set type of boundary condition

bc.x_pos = pylith.bc.DirichletTimeDependent

bc.y_neg = pylith.bc.DirichletTimeDependent

[pylithapp.problem.bc.x_pos] ; Boundary condition for +x

constrained_dof = [0] ; Constrain x DOF

label = edge_xpos ; Name of nodeset from CUBIT/Trelis

db_auxiliary_fields = spatialdata.spatialdb.SimpleDB ; Set type of spatial database

db_auxiliary_fields.label = Dirichlet BC +x edge

db_auxiliary_fields.iohandler.filename = axial_disp.spatialdb ; Filename for database

Using PyLith

default

Parameters Graphical User-Interface
cd parametersgui; ./pylith paramviewer

Using PyLith

default

Spatial Databases
User-specified field/value in space for properties and BC values.

Examples
Uniform value for Dirichlet BC (0-D)
Piecewise linear variation in tractions for Neumann BC (1-D)
SCEC CVM-H seismic velocity model (3-D)

Generally independent of discretization for problem
Available spatial databases
UniformDB Optimized for uniform value
SimpleDB Arbitrarily distributed points for variations in 0-D, 1-D, 2-D, or 3-D

SimpleGridDB Logically gridded points for variations in 0-D, 1-D, 2-D, or 3-D
SCECCVMH SCEC CVM-H seismic velocity model v5.3

ZeroDB Special case of UniformDB with zero values

Using PyLith

default

PyLith Design: Focus on Geodynamics
Leverage packages developed by computational scientists

PyLith

spatialdataPETSc

Proj.4HDF5NetCDF Pyre numpy

MPIBLAS/LAPACK

Using PyLith

default

PyLith Development Follows CIG Best Practices
github.com/geodynamics/best practices

Version Control
New features are added in separate branches.
Use ’master’ branch as stable development branch.

Coding
User-friendly specification of parameters at runtime.
Development plan, updated annually.
Users can add features or alternative implementations without modifying code.

Portability
Build procedure is independent of compilers and optimization flags.
Multiple builds (debug/optimized) from same source.

Documentation and User Workflow
Extensive example suite with varying levels of complexity.
Changing simulation parameters does not require rebuilding.
Displays version information via --version command line argument.

Using PyLith

https://github.com/geodynamics/best_practices

default

Development Tools
Leverage open-source tools for efficient code development.

GitHub Code repository supporting simultaneous, independent implementation
of new features.

Doxygen Document parameters and purpose of every object and its functions.
CppUnit Test nearly every function in code during development.
Travis CI Run tests when code is committed to repository.

gcov Records which lines of code tests cover.

Using PyLith

default

Testing
Multiple levels of testing facilitates identifying bugs at origin.

unit tests Serial testing at level of single and multiple functions.
MMS tests Serial testing with Method of Manufactured Solutions (MMS) to verify

implementation of governing equations
full-scale tests Serial and parallel pass/fail tests of full problems.
benchmarks Serial and parallel tests for code comparisons, etc.

Using PyLith

default

PyLith v3.0.0beta1 (Jun 10, 2019)
Incomplete, contains bugs, but can do interesting physics

Features (mesh importing) not changed remain stable.
Some implemented features have been thoroughly tested.
Some implemented features have minimal testing.
A few implemented features have no testing.
Several major features in v2.2 have not yet been implemented.

Using PyLith

default

PyLith v3.0.0beta1: Governing Equations

Elasticity
Static and quasi-static problems
Dynamic problems (with inertia)
Infinitesimal strains
Small strain
Gravitational body forces
Body forces
Bulk rheologies (constitutive models)

Isotropic, linear elasticity
Isotropic, linear Maxwell viscoelasticity
Isotropic, linear generalized Maxwell viscoelasticity
Isotropic, power-law viscoelasticity
Isotropic, Drucker-Prager elastoplasticity

Done
Buggy
In Progress
Coming LaterUsing PyLith

default

PyLith v3.0.0beta1: Governing Equations
Incomplete, contains bugs, but can do interesting physics

Incompressible Elasticity
Static and quasi-static problems
Infinitesimal strains
Gravitational body forces
Body forces
Bulk rheologies (constitutive models)

Isotropic, linear elasticity
Isotropic, linear Maxwell viscoelasticity
Isotropic, linear generalized Maxwell viscoelasticity
Isotropic, power-law viscoelasticity

Using PyLith

default

PyLith v3.0.0beta1: Boundary and Interface Conditions

Boundary conditions
Time-dependent Dirichlet boundary conditions
Time-dependent Neumann (traction) boundary conditions
Absorbing boundary conditions

Interface conditions
Kinematic (prescribed slip) fault interfaces w/multiple ruptures
Dynamic (friction) fault interfaces

Static friction
Linear slip-weakening
Linear time-weakening
Dieterich-Ruina rate and state friction w/ageing law

Using PyLith

default

PyLith v3.0.0beta1: Other Features

Importing meshes
LaGriT: GMV/Pset
CUBIT/Trelis: Exodus II
ASCII: PyLith mesh ASCII format (intended for toy problems only)

Initial conditions
Output: HDF5 and VTK files

Solution over domain
Solution over domain boundary
Solution interpolated to user-specified points w/station names
Solution over materials and boundary conditions
State variables (e.g., stress and strain) for each material
Fault information (e.g., slip and tractions)

Using PyLith

default

PyLith v3.0.0beta1: Other Features (cont.)

Automatic conversion of units for all parameters
Parallel uniform global refinement
PETSc linear and nonlinear solvers
Output of simulation progress estimates runtime

Using PyLith

default

How do changes from v2.x to v3.x affect users?

No changes
Meshes
Formats of spatial database files

Substantial changes
Parameter (cfg) files
Names of values in spatial database files

HDF5 output is now the default

Using PyLith

default

Mesh Generation Tips
There is no silver bullet in finite-element mesh generation

Hex/Quad versus Tet/Tri
Hex/Quad are slightly more accurate and faster
Tet/Tri easily handle complex geometry
Easy to vary discretization size with Tet, Tri, and Quad cells
There is no easy answer
For a given accuracy, a finer resolution Tet mesh that varies the discretization size
in a more optimal way might run faster than a Hex mesh

Check and double-check your mesh
Were there any errors when running the mesher?
Are the boundaries, etc marked correctly for your BC?
Check mesh quality (aspect ratio should be close to 1)

CUBIT/Trelis General

default

CUBIT/Trelis Workflow

1 Create geometry
1 Construct surfaces from points, curves, etc or basic shapes
2 Create domain and subdivide to create any interior surfaces

Fault surfaces must be interior surfaces (or a subset) that completely divide domain
Need separate volumes for different constitutive models, not parameters

2 Create finite-element mesh
1 Specify meshing scheme
2 Specify mesh sizing information
3 Generate mesh
4 Smooth to fix any poor quality cells

3 Create nodesets and blocks
1 Create block for each constitutive model
2 Create nodeset for each BC and fault
3 Create nodeset for buried fault edges
4 Create nodeset for ground surface for output (optional)

4 Export mesh in Exodus II format (.exo files)

CUBIT/Trelis General

default

CUBIT/Trelis Issues
Keep in mind the scales of the observations you are modeling

Topography/bathymetry
Ignore topography/bathymetry unless you know it matters
For rectilinear grid, create UV net surface
Convert triangular facets to UV net surface via mapped mesh

Fault surfaces
Building surfaces from contours is usually easiest
Include features at the resolution that matters

Performance
Number of points in spline curves/surfaces has huge affect on mesh generation
runtime
CUBIT/Trelis do not run in parallel
Use uniform global refinement in PyLith for large sims (>10M cells)

CUBIT/Trelis General

default

CUBIT/Trelis Best Practices

Issue: Changes in geometry cause changes in object ids
Soln: Name objects and use APREPRO or Python to eliminate hardwired ids

wherever possible

Issue: Splines with many points slows down operations
Soln: Reduce the number of points per spline

Issue: Surfaces meet in small angles creating distorted cells
Soln: Trim geometry to eliminate features smaller than cell size

Issue: Difficulty meshing complex geometry with Hex cells
Soln: Use Tet cells even if it requires a finer mesh

Issue: Hex mesh over-samples parts of the domain
Soln: Use Tet mesh and vary discretization within domain

Issue: Extended surfaces create very complex geometry
Soln: Subdivide geometry before webcutting to eliminate overly complex

geometry
CUBIT/Trelis General

default

PyLith Tips

Read the PyLith User Manual
Do not ignore error messages and warnings!
Use an example/benchmark as a starting point
Quasi-static simulations

Start with a static simulation and then add time dependence
Check that the solution converges at every time step

Dynamic simulations
Start with a static simulation
Shortest wavelength seismic waves control cell size

CIG community forums
https://community.geodynamics.org/c/pylith
PyLith User Resources
https://wiki.geodynamics.org/software:pylith:start

CUBIT/Trelis PyLith

default

Getting Started

1 Create a play area for working with examples
cd PATH TO PYLITH DIR

mkdir playpen

cp -r src/pylith-3.0.0beta1/examples playpen/

2 Work through relevant examples
3 Try to complete relevant exercises listed in the manual
4 Modify an example to look like your problem of interest

CUBIT/Trelis PyLith

default

Overview of Examples
Examples progress from simple to more complex

1 2d/box
Axial compress/extension w/Dirichlet BC
Shearing with Dirichlet and Neumann BC

2 3d/box
Same as 2d/box in 3D

3 2d/strikeslip
Variable mesh size in CUBIT/Trelis
Prescribed fault slip
Dirichlet boundary conditions

4 2d/reverse
Gravitational body forces with linear elasticity
Gravitational body forces with incompressible elasticity
Prescribed slip on multiple faults

CUBIT/Trelis PyLith

default

Overview of Examples (cont.)
Examples progress from simple to more complex

6 2d/subduction
Meshing a 2-D cross-section of a subduction zone
Prescribed fault slip
Afterslip driven by traction changes from coseismic slip

7 3d/strikeslip (wish list)
Meshing intersecting strike-slip faults with complex geometry
Prescribed fault slip

8 3d/subduction
Meshing a 3-D subduction zone with complex geometry
Prescribed fault slip

CUBIT/Trelis PyLith

	Introduction
	PyLith v3.0
	Governing Equations
	Elasticity
	Incompressible Elasticity
	Incompressible Elasticity

	Using PyLith
	CUBIT/Trelis
	General
	PyLith

