
Introducing Version control
Collaborative development

Continuous integration

Rene Gassmoeller,
UC Davis

Version control – A story told in file names

• Archive your history:
What was the state at last
AGU?

• Archive your decisions: Why
did you change this?

• Archive connections: What
else was affected by this
change?

• Safely test inside the same
directory

Version control – Collaborative development

• Create branch

• Make commits

• Create pull request

• Wait for review

• Address comments

• Pull request is merged
Github Flow, https://guides.github.com/introduction/flow/

• Allows parallel, safe,
reproducible development of
code

https://guides.github.com/introduction/flow/

Version control – Setting up Git

• Install git

• Set name and email address:
• git config --global user.name “[name]”

• git config --global user.email “[email]”

• Set favourite text editor:
• git config --global core.editor "vim“

Version control – Setting up Github

• Create a github account

• Browse to the
geodynamics/Rayleigh
repository

• Click the “Fork”button (top right)

• Create a ssh-key on your laptop
(if you do not have one already),
e.g. by running `ssh-keygen` in
your terminal

• Link the public SSH key
($HOME/.ssh/id_rsa.pub) with your github
account under
https://github.com/settings/keys
by copying the content of the key to the
webpage

https://github.com/settings/keys

Version control – Creating a local copy

• Github.com: • Local computer:

Project repo

My github clone
of project repo

(“fork”)

Working copy

Local clone

fork
check out

clone

By default:
Cloning automatically
also creates a checked
out working copy.

Version control – Creating a local copy

1. Workflow in on Github:

• Browse to the
geodynamics/Rayleigh repository

• Click the “Fork”button (top right)

2. In a terminal of the local computer:

• git clone \
git@github.com:username/Rayleigh.git

• git remote add upstream \
https://github.com/geodynamics/Rayleigh.git

• We have created 2 remotes, “origin”
(username/Rayleigh), and “upstream”
(geodynamics/Rayleigh)

mailto:git@github.com:username/Rayleigh.git

Version control – Making a pull request

• Github.com: • Local computer:

Project repo
(“upstream”)

My github clone
(“origin”)

Working copy

Local clone

pull request commit

push

make
local
changes

Version control – Making a pull request

In practice:

• Because there is a delay between
– creating a pull request
– getting it accepted
it is useful to do almost all
development on branches

• Workflow then:
– create small “feature branch”
– do development, commit changes
– “push” the branch to origin
– create a “pull request” for the changes
between

. the base of the branch

. the tip of the branch

Version control – Making a pull request

• Workflow on Github:
• If you just pushed: An option to

create a pull request will appear
• If later:

• Go to the page of your fork
• Click “Create pull request”
• Select your branch add_feature_X

• Describe your changes and open
pull request

• Wait for review and address
comments by repeating the local
steps

• Local computer:
• git checkout –b add_feature_X
• Implement feature X
• Test feature X
• git add filename
• git commit –m ‘Add feature X’
• git push origin add_feature_X

Version control – Updating from official repo

• Github.com: • Local computer:

Project repo

My github clone
of project repo

(“fork”)

Working copy

Local clone

Pull upstream

Version control – Updating from official repo

• Into your current branch:
• git branch

• git pull upstream master

• Into the local master branch:
• git checkout master

• git pull upstream master

• git push origin master

Version control – Helpful git commands

• git help <command>: Get help on any git command

• git log: See history of changes

• git branch: See current branch and available branches

• git checkout <branchname>: Switch to different branch

• git add <filename>: Add file to the next (future commit)

• git commit: Create a new commit (=snapshot of the current state)

• git pull <remote> <branch>: Download changes from other repository

• git push <remote> <branch>: Upload changes to another repository

• https://services.github.com/on-demand/downloads/github-git-cheat-
sheet.pdf

https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf

Continuous integration

What does it mean?

• No separation in development and
stable version

• Releases are just snapshots of the
development version with a name

• Make development version stable
by continuous (automatic) testing,
and peer code review

What does it do?

• Generate trust in your software

• Find/Fix bugs early, fast, and cheap

• Lower barrier for big changes

• Save embarassment during review

• Example from ASPECT:

Collaborative development – Code review

• The auto-tester only checks existing tests, can not find all bugs

• Human code review significantly reduces bugs, and improves code
quality (efficiently)

• Goal: To review all code before it is merged into Rayleigh (even from
maintainers)

• Do this via Githubs review functionality: Hands-on public review

• Keep Code review friendly and constructive:
• Only request necessary improvements (not nice to have features)

• Consider level of contributor, but be strict about fundamentals

• Teach code structure and guidelines

