Introducing Version control
Collaborative development
Continuous integration

Rene Gassmoeller,
UC Davis

COMPUTATIONAL
INFRASTRUCTURE
for GEODYNAMICS

Version control — A story told in file names

° Arch|ve your hlstory. — A& STORY TOLD (N FILE NAMES:
2 Ciuser\researchidata
What was the state at last e IR
AGU? i data_2010.05.28_test.dat 3:37 PM 5/28/2010 DAT file
{3 data_2010.05.28_re-test dat 4:20PM 5/28/2010 DAT file
: . . i data_2010.05.28_re-re-test dat S:43PM 5/28/2010 DAT file
° ArCh|Ve your deC|S|OnS. Why 2 data_2010.05.28_calibrate dat 7:17 PM 5/28/2010 DAT file
- : i data_2010.05.28_huh??.dat 7:20PM 5/28/2010 DAT file
did you cha nge this? \3 data_2010.05.28_WTF.dat 9:58 PM 5/28/2010 DAT file
_ _ i@ data_2010.05.29_aaarrrgh dat 12:37 AM 5/29/2010 DAT file
e Archive connections: What i data_2010.05.20_#$@*&!! dat 2:40 AM 5/29/2010 DAT file
| teacted by thi 2 ita_EDID.DS.EQ_EraUF;.d;Ej 3:22 AM S}fzgﬁzma DAT ?:e
i@ data_2010.05.29_notbad.dat 4:16 AM 5/29/2010 DAT file
€lse was atiecie y this i data_2010.05.29_woohoo!! dat 4:47 AM 5/29/2010 1,340KB DAT file
chan ge? i data_2010.05.20_USETHISONE dat ~ 5:08 AM 5/29/2010 2,894 KB DAT file
&) analysis_graphs.xls 7113 AM 5/29/2010 455 KB XLS file
e Safel .. h #) ThesisOutlinel.doc 7:26 AM 5/29/2010 38KBE DOCfile
Safely test inside the same %) Notes_Meeting_with_ProfSmith.tt 11:38 AM 5/29/2010 1,673KB TXT file
. DINK..) - 2:45PM 5/29/2010 Folder
directo ry k2 [data_2010.05.30_startingover.dat | 8:37 AM 5/30/2010 420KB DAT file

< | >
Type: Ph.D Thesis Modified: too many times Copyright: Jarge Cham wwrw, phdcomics.com

Version control — Collaborative development

(¥) ® e Create branch
o—o—o0—(j))—o—o—o—(3) * Make commits
T * Create pull request

e Wait for review

 Address comments
Github Flow, https://guides.github.com/introduction/flow/

* Pull request is merged

* Allows parallel, safe,
reproducible development of
code

https://guides.github.com/introduction/flow/

Version control — Setting up Git

* Install git

* Set name and email address:

* git config --global user.name “[name]”
* git config --global user.email “[email]”

e Set favourite text editor:
* git config --global core.editor "vim*

git

Version control — Setting up Github

* Create a github account * Link the public SSH key
(SHOME/.ssh/id_rsa.pub) with your github
* Browse to Fhe . account under
geodynamics/Rayleigh https://github.com/settings/keys
repository by copying the content of the key to the

* Click the “Fork”button (top right) webpage

* Create a ssh-key on your laptop
(if you do not have one already),
e.g. by running ssh-keygen' in
your terminal

GitHub

https://github.com/settings/keys

Version control — Creating a local copy

 Github.com:

Project repo

By default:

forkl Cloning automatically

also creates a checked
out working copy.

My github clone

y

of project repo
(“fork”) clone

* Local computer:

Working copy

Tcheck out

Local clone

Version control — Creating a local copy

1. Workflow in on Github: 2. In aterminal of the local computer:
* Browse to the o| git clone \
geodynamics/Rayleigh repository git@github.com:username/Rayleigh.git
* Click the “Fork”button (top right) o| git remote add upstream \
https://github.com/geodynamics/Rayleigh.git

* We have created 2 remotes, “origin”

(username/Rayleigh), and “upstream”
(geodynamics/Rayleigh)

mailto:git@github.com:username/Rayleigh.git

Version control — Making a pull request

 Github.com:

Project repo
(“upstream”)

puHrequestI

My github clone
(“origin”)

AN

push

* Local computer:

S

Working copy

lcommit

Local clone

make
local
changes

Version control — Making a pull request

In practice: * Workflow then:
. — create small “feature branch”
* Because there is a delay between .
. — do development, commit changes
— creating a pull request “« ” .
S — “push” the branch to origin
— getting it accepted » ”
L — create a “pull request” for the changes
it is useful to do almost all
development on branches between
P . the base of the branch

. the tip of the branch

Version control — Making a pull request

 Workflow on Github:

* If you just pushed: An option to
create a pull request will appear

* If later:
* Go to the page of your fork
* Click “Create pull request”
e Select your branch add_feature X

* Describe your changes and open
pull request

* Wait for review and address
comments by repeating the local
steps

e Local computer:

git checkout —b add_feature X

Implement feature X
Test feature X

git add filename

git commit —m ‘Add feature X’

git push origin add_feature X

Version control — Updating from official repo

* Github.com: * Local computer:

Project repo > Working copy
Pull upstream
My github clone

of project repo Local clone
(“fork™)

Version control — Updating from official repo

* Into your current branch: * Into the local master branch:
*|git branch *|git checkout master
*|git pull upstream master *|git pull upstream master
*|git push origin master

Version control — Helpful git commands

* git help <command>: Get help on any git command

* git log: See history of changes

 git branch: See current branch and available branches

e git checkout <branchname>: Switch to different branch

* git add <filename>: Add file to the next (future commit)

e git commit: Create a new commit (=snapshot of the current state)

* git pull <remote> <branch>: Download changes from other repository
 git push <remote> <branch>: Upload changes to another repository

e https://services.github.com/on-demand/downloads/github-git-cheat-
sheet.pdf

https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf

Continuous integration

What does it mean? What does it do?

* No separation in development and * Generate trust in your software
stable version * Find/Fix bugs early, fast, and cheap

 Releases are just snapshots of the * Lower barrier for big changes
development version with a name * Save embarassment during review

* Make development version stable e Example from ASPECT:

by continuous (automatic) testing,
and peer code review

100% tests passed, 0 tests failed out of 614

\/ aspect 1 Pipeline Changes Tests

Pull Request: PR-2419 & @ 21m 31s No changes

Commit: 042621b © adayago Pull request #2419 updated

Check
Start info permissions Check indentation Build Prebuild tests Run tests End

® & \C_)/ o o o ©) ®

Collaborative development — Code review

* The auto-tester only checks existing tests, can not find all bugs

* Human code review significantly reduces bugs, and improves code
quality (efficiently)

* Goal: To review all code before it is merged into Rayleigh (even from
maintainers)

* Do this via Githubs review functionality: Hands-on public review

» Keep Code review friendly and constructive:
* Only request necessary improvements (not nice to have features)
* Consider level of contributor, but be strict about fundamentals
» Teach code structure and guidelines

