
Rayleigh Hackathon 2018 Final report

Rayleigh Hackathon 2018 Preliminary report 1

Introduction 3

Timeline 3

Participants and areas of interest 4

Report on projects the participants worked on 7
Some examples follow. 7
Use heading 2 for title of your task 7

Use heading 4 for your name(s) 7
Began Implementing Generic Spectral Input Interface 7

Nick Featherstone, Cian Wilson 7
Modified the Rayleigh tester to test for changes in the output 8

Rene Gassmoeller, Tyler Esser 8
Update the README.md file to link to CONTRIBUTING.md 8

Rene Gassmoeller 8
Create a github pages website for Rayleigh 8

Rakesh, Nick, Rene Gassmoeller 8
Ben Miquel, Kyle Augustson 9

Started on Cookbooks 9
Maria Weber 9

Started on Cookbooks 10
Sebastian Glane 10

Fixing a boundary condition bug 10
Connor Bice 10

Fixed a variety of bugs in the turbulent and viscous diagnostics 10
Brad Hindman 10

Fixed various bugs 11
Cian Wilson 11

Added 3D output diagnostic routines 11
Cian Wilson 11

Added Kinetic Helicity and Axial Field Diagnostics 11
Ryan Orvedahl, Valentin Skoutnev, Brad Hindman, Jon Aurnou, Krista Soderlund 11

Added a function to fetch local address of spectrum data from spherical harmonics mode 11
Documentation Improvements 12

Lorraine Hwang 12
Create Discourse Forum 12

Statistics about ASPECT’s growth during the hackathon 13

Introduction
To further develop the spherical convection/dynamo code Rayleigh and to grow and foster its
user community, 18 users and developers of Rayleigh worked side-by-side over a 3 day period
close to Boulder, Colorado in September 2018.

The Rayleigh community made significant progress along various lines of project development.
Some efforts begun at the workshop remain in their initial stages. This includes a multi-month
effort to revamp Rayleigh’s linear solve to take advantage of a newly-developed sparse
Cheby/Gaelerkin scheme, as well as a separate effort to provide a generic spectral-input
interface for the code. Moreover, several code additions were brought to fruition at the
workshop, such as the addition of new axial (z-axis-aligned) diagnostics, new internal
spectral-indexing capability, and numerous bug-fixes to the turbulent-kinetic-energy diagnostics
package. In addition to code development, substantial progress was made on non-code
aspects of the Rayleigh project. An initial testing framework was established, an github.io page
was created, and several improvements to the documentation were developed over the course
of the workshop.

A portion of the workshop was also devoted to discussing future directions for the Rayleigh
code. Several potential future developments are enumerated at
tinyurl.com/Rayleigh2018Future . Two topics which were heavily discussed included further
optimization of numerical algorithms and creation of interface that facilitate the interoperability of
Rayleigh with other commonly-used spectral convection codes. Additional post-processing
capability, particularly with regards to 3-D output, is now being planned as well.

During the course of the hackathon, every participant contributed source code to the project.
Together, users and developers added a total of more than 4,000 lines of code, arising from 176
individual contributions, and including 40 new tests.

Below is the timeline and a log of the individual contributions. Many of these contributions are
discussed in greater detail following the table of participants’ interests.

Timeline
Day Scheduled items

Monday, 09/17 9:00A: Participant Introductions
The open source philosophy
Future Directions
12:30P: Data Discussion
1:30P:

Github tutorial. Continuous Integration
Creating first pull requests - working on Summit, code
structure, and making changes to diagnostics codes

Tuesday, 09/18 8:30A: Parallel structure of Rayleigh
Cookbooks, initial projects
Noon: lunch
1P: Tinker Time

Wednesday, 09/19 8:30A: Morning rounds, discussion about authors of the
project, forums, Tinker TIme

2P: Wrap-up discussion, future hacks

Participants and areas of interest

Name, affiliation, email Goals and interests for this hackathon

Rene Gassmoeller,
UC Davis,
rene.gassmoeller@mailbox.org

1. Help others achieve their goals
2. Review pull requests
3. Set up tester

Lorraine Hwang
UC Davis
ljhwang@ucdavis.edu

1. Logistics
2. Documentation
3. Setting up forum
4. Reporting

Nick Featherstone
CU Boulder
nicholas.featherstone@colorado.edu

1. Introducing people to Rayleigh’s design
2. Helping others

Cian Wilson
Carnegie Institution DTM
cwilson@carnegiescience.edu

1. Learn core of Rayleigh
2. Discuss feasibility of wish list
3. Start to implement some of wish list

Sebastian Glane
Berlin Institute of Technology
glane@tu-berlin.de

1. Learn how to implement new items to Rayleigh
2. Document numerical and time-stepping

schemes and improve time-stepping
3. Implement output to vtk-format for visualization

using paraview
4. Implement Gaussian filtering of the data

Ryan Orvedahl
CU Boulder
ryan.orvedahl@colorado.edu

1. Learn details of parallelization
2. Learn how Diagnostics are done
3. Add more outputs to the Diagnostics

Brad Hindman
CU/JILA
hindman@lcd.colorado.edu

1. Learn how to contribute to the Rayleigh project
in an organized fashion

2. Learn how to add unique physics modules to
Rayleigh (e.g, turbulent diagnostics)

3. Initiate collaborative efforts

Loren Matilsky
CU/JILA
loren.matilsky@colorado.edu

1. Listen in on accurate/efficient Chebyshev
implementation

2. Listen in on work on Cartesian mode
3. Learn how to implement various custom

diagnostics--third derivatives?
4. Learn about OpenMP implementation (no

experience currently.)

Maria Weber
University of Chicago, Adler
Planetarium
maweber@uchicago.edu

1. Learn what’s ‘under the hood’ of Rayleigh
2. Help with improved documentation
3. Improved and documented visualization

pipelines
4. Learn more about creating custom diagnostics

Ben Miquel
CU Boulder
benjamin.miquel@colorado.edu

1. Understand better the core and the
architecture of Rayleigh

2. Implement the Chebyshev QI method for
accurate high-order radial derivatives (even
with high resolution)

Krista Soderlund
UTIG
krista@ig.utexas.edu

1. Learn how to contribute to Rayleigh, especially
wrt diagnostics and inclusion of new physics
(e.g., conducting inner core)

2. Help with output plotting routines
3. Best practices for data sharing

Kyle Augustson
CEA-Saclay
kyle.augustson@cea.fr

1. Consider how to generalize the Rayleigh core
for additional PDEs that can utilize the
mathematical/numerical structure of it.

2. Assist with implementation of quasi-inverse
methods.

3. Consider how to implement alternative
time-stepping routines, e.g. Gauss-Legendre
fully implicit Runge-Kutta methods. Need for
alternative parallelization.

4. Assess ability to have flexible geometry, e.g.
those with smooth mapping between

Cartesian, cylindrical, or spherical geometry.
(Ties into point 1).

5. Examine possibility of modular output,
runtime-compiled routines that have access to
internal data and operators (in physical or
spectral space) to build custom output.

Connor Bice
CUB
connor.bice@colorado.edu

1. Understand Rayleigh’s data structures / math
layer / parallelization better

2. Learn how to interact with the repository
correctly

3. Fix the issues with angular momentum
conservation for deep shells

Jon Aurnou
UCLA
aurnou@ucla.edu

1. Learn how to run Rayleigh and output data
from the simulations

2. Learn how to discuss changes and to
contribute to Rayleigh

3. Implement new diagnostics especially relevant
to low Rossby number flows that exist in
planetary cores & deep atmospheres

4. Building of active development community
5. Focus on how best for CIG to continue to

develop Rayleigh into the future

Valentin Skoutnev
Princeton U.
skoutnev@princeton.edu

1. Learn how to build/run Rayleigh
2. Learn how to add diagnostics and submit pull

requests.
3. Understand a bit about the solve part of the

code so that I can go back and try working
with it.

Hiro Matsui
CIG, UC Davis
hematsui@ucdavis.edu

1. Learn data format of Rayleigh to lead the
Rayleigh data output into Calypso

Report on projects the participants worked on

Began Implementing Generic Spectral Input Interface

Nick Featherstone, Cian Wilson

We began development of an interface via which users can supply spectral coefficients for use
in specifying custom initial conditions and boundary conditions to Rayleigh. After deciding on a
standard file format (recorded on whiteboard below), Cian began work on the Python-side
writing routine, and Nick began implementing the Rayleigh-side reading routine.

Modified the Rayleigh tester to test for changes in the output

Rene Gassmoeller, Tyler Esser
We improved the Rayleigh tester to not only check if Rayleigh compiles correctly, but also to
check if the one test case that we have at the moment creates the same result as before. This
also includes setting up a directory structure to add more test cases in the future.

Update the README.md file to link to CONTRIBUTING.md

Rene Gassmoeller
The readme now also links to the contributing guidelines, to make them more visible.

Create a github pages website for Rayleigh

Rakesh Yadav, Nick Featherstone, Rene Gassmoeller

We created a preliminary webpage for Rayleigh, visible at
https://geodynamics.github.io/Rayleigh/

Implementation of the QI method

Ben Miquel, Kyle Augustson
For those curious about the Quasi-Inverse method for Chebyshev polynomials, here are the
notes that Ben Miquel sent to me as prep work for understanding the work of Keith Julien and
Mike Watson and how one might mesh it with the inner workings of Rayleigh. As a quick
summary, the Quasi-Inverse formalism is a means by which the currently dense matrices used
in the implicit solve may be recast into a block-banded sparse solve. This is done by expanding
the non-constant coefficients and the radial derivatives of the mode-wise spherical-harmonically
projected PDEs on Chebyshev polynomials and noting that the Kronecker product of the
derivative operators and the Chebyshev coefficient matrices of the coefficients lead to a LHS
matrix that then will have a sparse block-banded structure (as seen in Figures 7, 9, and 11 in
the 2009 Julien & Watson paper).

https://geodynamics.github.io/Rayleigh/

We have begun tracing through Rayleigh to see where, at least as a test case, the Z equation
may be cast into the QI formalism. The WPS equations, being coupled, require a more subtle
consideration wherein the equation may need to be reformulated to have order-consistent
boundary conditions by eliminating the third order radial derivative on W. This is nice in another
way as it changes the spatial structure of the equations to being more elliptic and thus more
akin to the underlying implicit Poisson solve for the instantaneously equilibrated pressure field.
In any case, it looks like a fair amount of code modification within the equation sets, linear solve,
and parallel framework will be necessary to accommodate the qi_pack library that Ben Miquel
has written.

So far, we have implemented the data structures necessary to use Ben’s routines and
developed the coefficient transforms to build the sparse implicit matrices. The next step is for
Ben to change which matrices are returned from his library so that they may be more directly
used in the implicit solve. Once those matrices are available, we may implement the wrapping
routine to the QI solving call in Ben’s library and begin to test the QI implementation. If this is
successful, we will tackle the implementation of the WPS equations so that more full scale
numerical tests can be conducted.

Started on Cookbooks

Maria Weber
I have added ‘cookbook’ examples for the four Rayleigh main input files for the ‘minimal’
benchmark cases. I’m currently working on finishing up the cookbook example for the
benchmark diagnostics output run with some example Python generated figures for verification.
The latter part is work in progress.

Started on Cookbooks

Sebastian Glane
I fixed the table formatting in the Diagnostics_Plotting.pdf document. The use of the longtable
package allows to now split the tables over several pages which yields a more compact
formatting, see document in repository. Furthermore, I have started to write a documentation on
the representation of the fields in Rayleigh and on the solution process discussed in the
meetings. The overall picture flow of the solution is clear and needs to be sketched up in LaTeX.
However, some details about the states of the buffer and variables still need to be clarified. As a
minor contribution I replaced all tab stops in the src-folder by spaces. Tab stops and blank at the
end of line were also deleted. At this stage, the Fortran compiler does not accept lines longer
than ~130 characters. Therefore I had to manually insert some line continuations.

Fixing a boundary condition bug

Connor Bice
I fixed the boundary condition strict_L_conservation, which plugs an angular momentum leak
but introduced a discontinuity at the top boundary which was most prominent for the models in
which the leak is fast (deep shells). Verification run still in progress.

Fixed a variety of bugs in the turbulent and viscous diagnostics

Brad Hindman
1) I submitted a small set of bug corrections for sign errors in the viscous force diagnostics.
2) A math error was fixed in the spherical geometry in the viscous transport of turbulent

kinetic energy.
3) The turbulent kinetic fluxes were all modified to correct an overall sign error.
4) An accuracy in the computation of the flow divergence was enhanced in the turbulent

kinetic energy budget diagnostics.

Fixed various bugs

Cian Wilson
1) Fix for sed whitespace removal on macs
2) Prevent segfaulting when no fields are specified for an output type by checking if arrays

are allocated before deallocating them
3) Spherical_3D output needed the access=‘stream’ attribute to be set

Added 3D output diagnostic routines

Cian Wilson
Added a class to rayleigh_diagnostics.py that can read the Spherical_3D output from Rayleigh.
Also added a script that takes this output and converts it to vtus. This currently leaves conical
holes at the poles and we discussed potential fixes for this. Seemed to conclude that
interpolating/averaging to a value at the pole and adding prismatic elements would be a
reasonable way forward.

Added Kinetic Helicity and Axial Field Diagnostics

Ryan Orvedahl, Brad Hindman,Jon Aurnou,Valentin Skoutnev, Krista Soderlund
Added new quantity codes relating to the various components of the kinetic helicity and tested
the outputs on a benchmark. Added a new Diagnostics Module for Axial Fields and completed
coding the velocity and helicity parts.

Added a function to fetch local address of spectrum data from
spherical harmonics mode
Hiro Matsui

Add a function to obtain local address of the spectrum data array (p1a, pab) from imput
spherical harmonics mode Y_{l}^{m}. This function will be in the module Load_Balance.
The function will be
 j = Find_local_sph_mode_address(l, m).

If process does not have the requested mode, Find_local_sph_mode_address returns 0.
If process has the requested mode Find_local_sph_mode_address returns local address for
spherical harmonics mode.

Documentation Improvements

Lorraine Hwang
1. Fixed miscellaneous typos and corrected path

name to files that were changed due to the
directory restructuring prior to the hack as well
as removal of some files during the hack. More
cleanup and proofreading needs to be done.

2. Added a cover page with image to the User Manual.
This adds as contributors everyone who is listed as a
contributor to the repository and all those with pending
pull requests.

3. Added a .bib file with the obvious references in the
manual. However, this has not been fully implemented.
Will need future work.

Create Discourse Forum
Lorraine Hwang
Initiated new forum for discussions at community.geodynamics.org. The Rayleigh developers
group will be our beta testers for configuring this new tool for CIG.

Statistics about Rayleigh’s growth during the
hackathon
The following contains a number of statistics about how much Rayleigh has grown during the
hackathon (until Oct 3rd, 2018):

● Number of source files in Rayleigh before/after: 94 -> 189 +95
● Lines of code in Rayleigh before/after: 82,217 -> 84,643 +2,426
● Number of merged pull requests before/after: 2 -> 46 +44
● Commits in github before/after: 78 -> 128 +50
● Number of tests before/after: 0 -> 1 +1

These statistics were generated through the following commands:

● find src/ | egrep '\.(F|F90|c|py)$' | wc -l
● cat `find src/ | egrep '\.(F|F90|c|py)$'` | wc -l
● git log --format=oneline | grep "Merge" | wc -l
● git log --format=oneline | grep -v "Merge" | wc -l
● ls -l tests/* | wc -l

