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Relax - Outlines

★ Equivalent body forces for faulting

★ Elastic Green’s functions in the Fourier domain

★ Examples

★ Equivalent body force for viscoelastoplastic problems

★ Examples



Equivalent body forces
Total strain is decomposed in elastic and 
inelastic strain components

Stress is the result of elastic (reversible) strain

Conservation of momentum (Newton’s law)

in the interior at the surface

inhomogeneous governing (Navier’s) equation: boundary condition:

equivalent body force (source term): equivalent surface traction:



Equivalent body forces - Faulting
For a dislocation, the eigenstrain 
depends on the slip direction, the 
fault orientation and dimension.
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Equivalent body forces - Faulting
For the special case of a vertical 
left-lateral strike-slip fault, the 
equivalent body force field is:
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For numerical considerations, the 
Delta and Heaviside functions are 
tapered:

thick faults 



Elastic Green’s function
Given equivalent body forces and surface tractions for faulting, 
displacement is obtained with elastic Green’s functions:

Computing displacements at N locations due to a distribution of forces requires 
a computational burden scaling with N2. Computing the elastic response 
numerically in the Fourier domain is more efficient, scaling with N log N. 

For example, for a full space, the elastic Green’s function 
can be expressed as follows



Fourier-domain Green’s function
For efficient calculations, we solve Navier’s equation in the Fourier domain.

Barbot & Fialko (2010a)

governing equation: boundary condition:

The solution to the inhomogeneous equation can be decomposed into two terms, 

with the homogeneous

and inhomogeneous components



Fourier-domain Green’s function

The inhomogeneous term does not necessarily satisfy the 
boundary condition but, in the interior, obeys

transfer function

Inhomogeneous term:

Upon Fourier transforming, the governing equation becomes algebraic

and the Fourier-domain solution is simply:

displacement force



Fourier-domain Green’s function
Homogeneous term:

The homogeneous term satisfies

and the boundary condition:

The solution can be expressed analytically in the Fourier domain

with:



Fourier-domain Green’s function
A choice of a homogeneous term may satisfy the boundary condition.

The stress associated with a displacement field is

or, in the Fourier domain

At the surface, the traction is obtained by integration

The homogeneous term must compensate

recall



Fourier-domain Green’s function
Solving Navier’s equation in the Fourier domain requires 4 steps:

(N log N)

1. Fourier transform the forcing term and apply the transfer function

2. Evaluate the exceeding stress of the temporary solution in the Fourier domain

3. Compute and add the correction term

3. Inverse-Fourier transform (N log N)

(reduction N)

(N)
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Example calculation and benchmarks
Thrust fault

Numerical error

dilatation (Mogi) source

Numerical error



Case of the Mw 7.3 1992 Landers, CA earthquake

x 1

x x

Surface 
displacements

displacements at 
10km depth

residuals with 
the analytic 
formulation of 
Okada (1992)

complex faulting 
geometry can be 

modeled using the 
superposition 

principle



Equivalent body forces 
for viscoelastoplastic problems

Total strain rate is decomposed in elastic and 
inelastic (eigenstrain) strain rate components

Stress rate is the result of elastic (reversible) strain rate

Conservation of momentum (Newton’s law)

in the interior at the surface

inhomogeneous governing (Navier’s) equation: boundary condition:

equivalent body force (source term): equivalent surface traction:



Equivalent body forces 
for viscoelastoplastic problems

Total strain rate is decomposed in elastic and inelastic (eigenstrain) 
strain rate components

The inelastic (irreversible) strain rate is decomposed into a rate and 
a strain direction

and the rate is controlled by a constitutive law

where the stress dependent on the current strain and the history of 
deformation (hereditary equation)



Constitutive laws for relaxation problems

Barbot & Fialko (2010b)

Poroelasticity:

Fault creep:

Viscoelastic flow:

Darcy flow

isotropic strain

rate-and-state friction

dislocation

deviatoric strain

equation of state



Relax Examples
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Coulomb stress calculation

Postseismic relaxation of  
the 1999 Mw 7.6 Chi-Chi 
earthquake

Rousset et al. (in prep.)



Surface 
processes

The change in surface loads from 
drainage of lakes (Cavalié et al. 
2007), monsoons, or glaciers retreat 
(Larsen et al. 2005) can be use to 
constrain the rheological properties 
of the lithosphere.

Elastic or viscoelastic response to 
surface loads monitored by GRACE 
are modeled to compare with GPS 
time series.

Seasonal surface loads

uplift

Chanard et al. (in prep.)



Relax features
Solves the elastic deformation in a homogeneous half space 
due to internal forces and surface tractions:

drainage of lakes, retreat of glaciers, monsoons,

 earthquakes, magmatic inflation, dyke intrusions

Solves the coupled nonlinear, fully heterogeneous 
viscoelastic deformation and fault creep due to stress 
perturbation:

postseismic deformation, volcanic unrest, afterslip, 

regional postglacial rebound



Future improvements

Lateral variations in elastic moduli (separate code today)

Full effect of gravity, including the change in gravitational 
potential

Approximation of the Earth’s curvature

Poroelasticity (separate code today)

And many technical improvements (MPI, Cuda)


