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1 Introduction

Magmatism is a fundamental feature of plate boundaries and an essential process controlling
the geochemical evolution of the planet. Nevertheless, the actual dynamics of melting and
melt transport are often neglected in large scale models of mantle convection and lithospheric
deformation. Based on discussions at the recent CIG workshop on Computational Magma Dy-
namics at Columbia University, it became clear that a concise set of notes/tutorial describing
the most commonly used formulation for magma migration, along with a set of clear bench-
mark problems, is an important first step toward developing a larger community of developers
and users interested in exploring magma dynamics.

Here we present a new formulation for the equations of magma migration in viscous mate-
rials as originally derived by McKenzie [1984]. We also present a set of well-understood spe-
cial case problems that form a useful benchmark-suite for developing and testing new codes. In
addition to providing a more readily available resource for understanding the “McKenzie Equa-
tions” we also want to emphasize that this formulation is tractable and is a natural extension of
mantle convection (i.e. incompressible and compressible Stoke’s Flow).

For clarity and simplicity, we only consider the equations for conservation of mass and
momentum as derived in McKenzie [1984]. These equations are readily extendible with new
physics such as reactive flow [e.g. Spiegelman et al., 2001], chemical transport [e.g. Spiegel-
man, 1996, Spiegelman and Kelemen, 2003] and consideration of grain-scale effects such as
surface energy [e.g. Bercovici et al., 2001, Ricard et al., 2001, Hier-Majumder et al., 2006].
Given the uncertainties in many of the components of these macroscopic multi-phase theories,
we expect the development of experimentally validated model systems to be an active and open
problem [e.g. Katz et al., 2006]. Nevertheless, the equations of McKenzie [1984] are probably
the best understood system at the present and a natural place to begin.
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1.1 Dimensional equations for mass and momentum

A derivation for these equations is found in Appendix A of McKenzie [1984] which considers
the macroscopic conservation of mass, momentum and energy for two interpenetrating con-
tinua consisting of a low-viscosity fluid in a high-viscosity deformable and permeable matrix.
The approach taken is quite general and can be extended to other solid rheologies, however,
as derived, the equations reduce to a system that consistently couples viscous mantle deforma-
tion (Stoke’s flow) with Darcy’s law for the fluid. The equations for conservation of mass and
momentum for both phases can be written

∂ρfφ

∂t
+ ∇· [ρfφv] = Γ (1.1)

∂ρs(1− φ)

∂t
+ ∇· [ρs(1− φ)V] = −Γ (1.2)

φ(v− V) = −K

µ
[∇P − ρfg] (1.3)

∇P = ∇·
(
η

[
∇V + ∇VT

])
+ ∇

[(
ζ − 2

3
η
)

∇· V
]

+ ρ̄g (1.4)

Whereφ is porosity,ρf , ρs are the fluid and solid densities,v, V are the fluid and solid velocity
fields,Γ is the rate of mass transfer from solid to liquid (i.e. melting/crystallization rate),K is
the permeability,µ is the melt viscosity,P is the fluid pressure andg is the acceleration due to
gravity. Finallyη, ζ are the shear and bulk viscosities of the solid andρ̄ = ρfφ + ρs(1− φ) is
the mean density of the two-phase system [see Spiegelman, 1993a,b, for further discussion].

Equations (1.1) and (1.2) conserve mass for the fluid and solid individually and allow mass-
transfer between the phases throughΓ. Equation (1.3) is an extended form of Darcy’s law
governing the separation of melt from solid. This separation flux is proportional to the perme-
ability and fluid-pressure gradients in excess of hydrostatic. Equation (1.4) governs momentum
conservation of the solid phase which is modeled as a compressible, inertia-free viscous fluid.

An important feature of Eqs. (1.1)–(1.4) is that they consistently couple solid stresses and
fluid pressure. The fluid pressure responds to solid deformation and gravity which drives fluid
flow and changes the porosity. Variations in porosity and stress can then feed-back through the
constitutive relations for the permeability and viscosity. Such feedbacks lead to a wide range
of behavior including spontaneous flow localization and the development of non-linear magma
waves (see below).

Constitutive Relations, Melting and Closure The principal non-linearities in this system
arise from the constitutive relations forK and η, ζ. The permeability is often modeled as
a simple power law (i.e.K ∝ φn with n ∼ 2–5) but can be assumed to be a non-linear
increasing function of the porosity. The solid shear viscosityη has been shown experimentally
to be be porosity weakening [e.g. Hirth and Kohlstedt, 1995b,a, Mei et al., 2002] in addition
to the usual temperature and strain-rate dependent behavior. The greatest uncertainty concerns
the matrix bulk viscosityζ which resists mechanical volume change of the solid. The bulk
viscosity is aneffectiveproperty of the two-phase aggregate and should be controlled by grain-
scale processes in partially molten rocks. It is often assumed to be comparable in magnitude
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to the shear viscosity but for constant solid densityρs, the bulk viscosity must become infinite
in the limit φ → 0 as the overall system must reduce to incompressible Stoke’s flow for the
solid. Further work needs to be done to develop consistent constitutive relations forζ based on
experiments and upscaling techniques. For many simplified systems, bothζ andη are assumed
to be constant (see below).

Finally, to close these equations requires a relationship for the mass transfer rateΓ. For a
full thermodynamic description of melting, this requires additional conservation equations for
energy (enthalpy and/or entropy), composition and equations of state for reactions and phase
equilibria. However, many of the important benchmark problems can be implemented without
melting or with simplified parameterizations of melting and we will outline those here.

2 A Better Formulation

Equations (1.1)–(1.4) provide a consistent coupling of mantle convection and Darcy’s law and
reduce to incompressible Stoke’s flow for the solid in the “dry” limitφ → 0. To show this
more clearly and to make the equations more tractable for computation, however, it is useful to
eliminate the melt velocity from these equations and rewrite them in terms of porosity, pressure
and the solid velocity field. Spiegelman [1993a] presents a similar decomposition for 2-D iso-
viscous problems, but here we extend it to general flows.

Pressure The key issue in these coupled fluid/solid problems is how to properly couple fluid
pressure and solid stresses. In the original McKenzie formulation,P is the fluid pressure.
While it is not explicit, this formulation also defines a solid pressure as

Ps = −(1/3)Tr(σs) = P − ζ∇· V (2.1)

Written asP − Ps = ζ∇ · V, this implies that differences between the solid and fluid
pressure drive volume changes of the solid matrix, e.g. the matrix will expand if the fluid
pressure exceeds the solid pressure(P > Ps). This usage is consistent with the derivation of
Scott and Stevenson [1984, 1986].

A better formulation can be developed by recognizing that the fluid pressure balances sev-
eral contributing components (e.g. Eq. 1.4) including body forces and dynamic pressures re-
sulting from viscous deformation of the solid. In particular, it is useful to partition the fluid
pressure into three components

P = Pl + P + P ∗ (2.2)

WherePl = ρ0
sgz is the reference background “lithostatic” pressure for constant solid density

ρ0
s, P = (ζ − 2η/3)∇ · V is the “compaction” pressure due to expansion or compaction of

the solid andP ∗ includes all remaining contributions to the pressure (particularly the dynamic
pressure due to viscous shear of the matrix).

With these definitions and a bit of algebra (see Appendix A), we can eliminate the melt
velocity v from the equations using the same basic manipulations as in Spiegelman [1993a]
[see also Spiegelman et al., 2001, Spiegelman and Kelemen, 2003]. If we approximateρf , ρs

to be constant (but not equal), we can rewrite the equations as

Dφ

Dt
= (1− φ)

P
ξ

+ Γ/ρs (2.3)
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−∇· K
µ

∇P +
P
ξ

= ∇· K
µ

[∇P ∗ + ∆ρg] + Γ
∆ρ

ρfρs

(2.4)

∇· V =
P
ξ

(2.5)

∇P ∗ = ∇· η
(
∇V + ∇VT

)
− φ∆ρg (2.6)

where
Dφ

Dt
=

∂φ

∂t
+ V ·∇φ

is the material derivative of porosity in the frame of the solid,ξ = (ζ−2η/3) and∆ρ = ρs−ρf .
Equation (2.3) is an evolution equation for porosity in a frame following the solid flow.

In this frame, porosity changes are driven by the balance of physical volume changes(∇ ·
V = P/ξ) and melting. Equation (2.4) is a modified Helmholtz equation for the compaction
pressureP which reduces to Darcy flow in rigid porous media in the limitξ → ∞. This
equation is responsible for much of the novel behavior in this system and has been discussed
in detail in Spiegelman [1993a,b]. Equation (2.5) relates the divergence of the solid flow field
to the compaction pressure, and Eq. (2.6) is Stoke’s equation for the solid velocity andP ∗ with
porosity driven buoyancy. Givenφ,P , P ∗ andV, the melt flux is reconstructed as

φv = φV − K(φ)

µ
[∇(P ∗ + P) + ∆ρg] (2.7)

All of these equations are in forms readily amenable to standard analytic and numerical
techniques. Below we show that under reasonable approximations they reduce to a suite of
problems that are well understood.

2.1 BoundaryConditions

Equations (2.3)–(2.6) form a coupled hyperbolic-elliptic set of equations for porosity, pressure
and solid flow. To solve these problems require initial conditions and inflow conditions for the
porosity and boundary conditions on pressure, solid velocity or stress. Most natural boundary
conditions for the compaction pressure can be written in terms of the melt flux and tend to
be Neumann conditions onP. Specific boundary conditions are discussed for each model
problem.

2.2 Scaling

These problems have been shown to have several intrinsic length and time scales that give rise
to natural scalings. Given a reference porosityφ0 (∼ 0.1− 1%). Thecompaction length

δ =

√
K(φ0)(ζ + 4η/3)

µ
(2.8)

is the length scale over which the compaction pressureP responds to variations in fluid flux
[McKenzie, 1984, Spiegelman, 1993a]. Likewise the theseparation flux

φ0w0 =
K(φ0)∆ρg

µ
(2.9)
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is an estimate of the gravity driven melt flux relative to the solid.
These definitions give rise to a useful scaling where primes denote dimensionless variables

x = δx′ ∇ = ∇′/δ

φ = φ0φ
′ t =

δ

w0

t′

(v, V) = w0(v, V)′ (P , P ∗) = ∆ρgδ(P , P ∗) (2.10)

K = K(φ0)K
′ Γ =

ρsφ0w0

δ
Γ′

ξ = (ζ0 + 4η0/3)ξ′ η = φ0(ζ0 + 4η0/3)η′

Substituting into Eqs. (2.3)–(2.7) and dropping primes yields the dimensionless equations

Dφ

Dt
= (1− φ0φ)

P
ξ

+ Γ (2.11)

−∇·K∇P +
P
ξ

= ∇·K [∇P ∗ + ĝ] + Γ
∆ρ

ρf

(2.12)

∇· V = φ0
P
ξ

(2.13)

∇P ∗ = ∇· η
(
∇V + ∇VT

)
− φ0φĝ (2.14)

whereĝ is a unit vector in the direction of gravity. In addition, for a power-law permeability,
the scaled permeability isK = φn.

3 Special Cases and Benchmark problems

Equations (2.11)–(2.14) are probably best understood through a systematic series of approx-
imate problems that form a useful benchmark suite for developing codes. Here we present
six problems of increasing complexity that have been developed and discussed in detail in the
literature.

3.1 Zero porosity, no melting

In the limit φ = 0 with no melting, these equations must reduce to those for incompressible
Stoke’s flow of the solid. Lettingφ = K = Γ = 0 and assuminglimφ→0 ξ = ∞, Eqs.
(2.11)–(2.12) vanish identically and Eqs. (2.13)–(2.14) become

∇· V = 0 (3.1)

∇P ∗ = ∇· η
(
∇V + ∇VT

)
(3.2)

as expected. As written, these equations are driven entirely by boundary conditions for solid
velocity or stress, however, other sources of buoyancy could be included in the gravitational
term. We suggest that a more general variable viscosity Stoke’s solver benchmark suite be im-
plemented as part of CIG. Accurate solutions (including accurate pressures) of Stokes are es-
sential for solving mantle convection, long-term lithospheric/crustal deformation and magma-
dynamics.
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Figure 1: Melt and solid flow fields for the special case of constant porosity, constant viscosity
and no melting (Section 3.3). The solid flow (dashed lines) is given by the corner flow solution
[Batchelor, 1967] and the melt stream function calculated from Spiegelman and McKenzie
[1987]. In general, any iso-viscous solid flow field that generates a non-constant vorticity can
develop pressure gradients that affect the flow of melt. In this case, the pressure is actually
singular at the corner.

3.2 Zero Permeability, no melting

A closely related problem allows for non-zero porosity but assumes the matrix isimpermeable
with K = 0. Again assuming that there is no melting (Γ = 0), the equations become

Dφ

Dt
= 0 (3.3)

P
ξ

= 0 (3.4)

∇· V = 0 (3.5)

∇P ∗ = ∇· η
(
∇V + ∇VT

)
− φ0φĝ (3.6)

which describe incompressible Stoke’s flow for the solid (with buoyancy terms) with passive
advection of any initial porosity field. The problem, as stated, is not terribly interesting but is
a useful test for any incompressible flow solver andnon-diffusiveadvection scheme.

3.3 Constant porosity, iso-viscous solid, no-melting

A more interesting problem arises from the case of constant porosityφ = 1, constantshear and
bulk viscosities and no-melting [e.g. Spiegelman and McKenzie, 1987, Phipps Morgan, 1987,
Spiegelman, 1993a]. The equations again reduce to incompressible Stoke’s flow for the solid,
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however, dynamic pressure gradients∇P ∗ are available to drive fluid flow. For dimensionless
variablesφ = 1 K = 1, η, ξ constant andΓ = 0, Eqs. (2.11–2.14) reduce to

∇· V = 0 (3.7)

∇P ∗ = η∇2V − φ0k (3.8)

and Eqs. (2.11)–(2.12) vanish identically. In particular Eq. (2.12) becomes

−∇2P + P/ξ = 0 (3.9)

which for P = 0 on the boundary of the domain impliesP = 0 everywhere in the interior.
For this problem, the only pertinent boundary conditions are for Stoke’s equation. The melt
velocity is entirely determined byV andP ∗.

v = V − K

φ0µ
[∇P ∗ − ĝ] (3.10)

This problem was used by Spiegelman and McKenzie [1987] and Phipps Morgan [1987]
for analytic models of melt flow beneath mid-ocean ridges and island arcs where melt focusing
is driven by dynamic pressure gradients due to corner flow. Figure 1 shows streamlines for both
solid and melt for a ridge related problem in Spiegelman and McKenzie [1987]. This problem
also provides an excellent test for pressure fields produced by incompressible solvers.

3.4 Magmatic Solitary Waves: Constant shear-viscosity, small porosity
limit, no Solid Shear, no melting

Since the general equations were derived, they have been known to support non-linear disper-
sive porosity waves in all dimensions [e.g. Scott and Stevenson, 1984, Scott et al., 1986, Scott
and Stevenson, 1986, Richter and McKenzie, 1984, Barcilon and Richter, 1986, Barcilon and
Lovera, 1989]. The wave behavior is a natural consequence of the ability for the matrix to dilate
or compact in response to variations in melt flux. This behavior is most readily demonstrated
from solving Eqs. (2.11)–(2.14) in the limit of small porosity (φ0 << 1) with η constant,ξ = 1
Γ = 0. Let K = φn and equations reduce to

Dφ

Dt
= P (3.11)

−∇· φn∇P + P = ∇· φnĝ (3.12)

For constant shear viscosity, the compressible and incompressible components of the solid
velocityV decouple. Equations (3.11)–(3.12) are valid in the limit that the solid is nearly static
except for a small compressible component of orderφ0 (alternatively that the solid flow field
can be written exclusively in terms of a scalar potentialV = ∇U). These equations admit
non-linear solitary waves in 1,2 and 3 dimensions (Figure 2) that propagate over a uniform
porosity background with fixed form and constant speed. For the 1-D waves, analytic solutions
exist for all integern with perhaps the clearest derivation in Barcilon and Richter [1986] for
n = 3 [see also Spiegelman, 1993b]. For higher dimensional waves, Barcilon and Lovera
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Figure 2: Solitary Waves in 1-,2- and 3-D. 1-D solutions from Spiegelman [1993a,b]. 2- and
3-D solutions from Wiggins and Spiegelman [1995].

[1989] rewrite the problem as an integro-differential equation and describe a shooting method
for calculating wave profiles. This method which was used in Wiggins and Spiegelman [1995]
to calculate initial conditions. More recently, however, Simpson (in prep.) has developed a
more robust spectral collocation method based on Sinc Methods [e.g. Lund and Bowers, 1992,
Stenger, 1993, 2000]. This approach can calculate highly accurate solitary wave profiles in
all dimensions, that provide excellent tests for numerical codes. Given a single solitary wave
of the appropriate dimension, it should propagate with unchanging form and constant phase
velocity. Any other behavior is an artifact of the numerical method. Matlab code for Simpsons
solitary wave generators as well as several PETSc based solitary wave codes with periodic
boundary conditions will be made available through the CIG web-site.

3.5 Magmatic Shear Bands: Variable shear viscosity, no melting, no buoy-
ancy

Solitary waves develop from obstructions in melt flux on scales much larger than the com-
paction length. However, porosity structures can also form at scales smaller than the com-
paction length by a range of localization phenomena including reactive fluid flow [e.g. Spiegel-
man et al., 2001] and mechanical shear in a matrix with variable shear viscosity. This latter
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mechanism is explored in detail in Katz et al. [2006] to explain the observations of low-angle
melt-rich bands observed in shear deformation experiments [e.g. Zimmerman et al., 1999,
Holtzman et al., 2003b,a]. The system of model equations can be derived from Eqs. (2.11)–
(2.14) by neglecting melting and buoyancy (Γ = 0, ĝ = 0) and letting viscosity be a function
of porosity and strainrate (η, ξ = f(φ, V)). The dimensionless equations become

Dφ

Dt
= (1− φ0φ)P/ξ (3.13)

−∇·K∇P + P/ξ = ∇·K∇P ∗ (3.14)

∇· V = φ0P/ξ (3.15)

∇P ∗ = ∇· η
(
∇V + ∇VT

)
(3.16)

When the shear viscosity is only porosity weakening (η = f(φ) f ′(φ) < 0) melt localization
has been shown to develop in pure and simple shears in an orientiation consistent with the
fastest opening direction [Stevenson, 1989, Spiegelman, 2003]. Recently Katz et al. [2006]
presented full calculations for porosity and strain rate dependent shear viscosity using

η(φ, ε̇) = η0e
α(φ−φ0)ε̇

1−n
n

II (3.17)

whereη0 is the shear viscosity at reference porosityφ0 and strain rate.α = −28± 3 is an ex-
perimentally derived porosity-weakening coefficient [Hirth and Kohlstedt, 1995b,a, Mei et al.,
2002],ε̇II is the second invariant of the incompressible component of the strain rate tensor, and
n defines the power-law dependence of viscosity on stress. This viscosity is Newtonian when
n = 1 and is a standard non-Newtonian power-law viscosity whenn > 1 andφ = 0.

Boundary Conditions The domain for this problem is periodic inx. On the boundary,w and
W are both equal to zero. Then, sinceφ(w −W ) =

kφ

µ
dP
dz

, the permeability on the boundary
should be zero, making the pressure in the buffer cells irrelevant to the rest of the calculations.
Figure 3 shows comparison of experimental results and numerical simulations for this problem.

3.6 2 and 3-D ridge models with forced adiabatic melting

The final benchmark problem should be a 2 (and or 3-D) ridge calculation such as given in
[Scott and Stevenson, 1989, Spiegelman, 1996] for the full solution of Eqs. (2.11)–(2.14) with
forced adiabatic melting

Γ = ρsW
dF

dz
(3.18)

whereW is the solid upwelling velocity andF (z) is an imposed “melting function” which de-
scribes the degree of melting expected as a function of height above the solidus (and would be
roughly the porosity if the melt did not separate from the solid). Figure 4 shows some solutions
from Spiegelman [1996] used to explore the chemical consequences of different melt and solid
flow geometries. In the spirit of the Subduction modeling benchmark (www.geo.lsa.umich.edu/
∼keken/subduction/benchmark.html/) we suggest that the magma-dynamics community, in
concert with organizations such as RIDGE2000 confer to develop a mutually aggreed upon
set of test problems for ridge modeling.
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Figure 3: Figure 1 from Katz et al. [2006] comparing numerical calculations of shear induced
melt localization to experiments
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Figure 4: Example 2-D solutions for the flow of melt and solid beneath a mid-ocean ridge
assuming constant shear viscosity and a linear melting functionF (z) = Fmax/d. A description
of these calculations can be found in Spiegelman [1996]. Both solutions show half of a ridge
calculation where black lines are melt flowlines, white curves are solid flow and the color
scale denotes porosity. Both calculations can be described by a porosity buoyancy numberR
that reflects the contribution of buoyancy driven flow to plate drive flow. (a) The solid flow
field is driven primarily by the boundary conditions of plate spreading. High viscosity solid
develops large pressure gradients ala Spiegelman and McKenzie [1987] that focus melt to the
ridge axis. (b) For lower shear viscosity, buoyancy dominates narrowing the area of upwelling.
Chemically these two flow fields are distinct, however, considerably more work needs to be
done to investigate the behavior of these systems in problems with porosity, temperature and
strain-rate dependent solid viscosity.
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A A Detailed Derivation of the Equations in Pressure Form

The basic manipulations to derive Eqs. (2.3)–(2.6) from Eqs. (1.1)–(1.4) are straightforward
and closely follow that given in Spiegelman [1993a]. We reproduce them here for complete-
ness.

To begin, we assume thatρf , ρf are constant but not equal (i.e. the two phases are indi-
vidually incompressible. . . this assumption can be relaxed fairly easily). We also use Eq. (2.2)
as

P = ρsgz + P + P ∗ (A.1)

whereP = (ζ − 2η/3)∇ · V = ξ∇ · V. Alternatively we can define the volumetric expan-
sion/compaction of the solid matrix as

∇· V =
P
ξ

(A.2)

Equation 2.3 With these definitions and assumptions, Eq. (2.3) is simply the expansion of
Eq. (1.2)

∂φ

∂t
+ V ·∇φ = (1− φ)∇· V + Γ/ρs (A.3)

with Eq. (A.2) substituted for∇· V.

Equation (2.4) To derive Eq. 2.4, first expand Eqs. (1.1) and (1.2) as

∂φ

∂t
+ ∇· [φv] = Γ/ρf (A.4)

− ∂φ

∂t
+ ∇· [(1− φ)V] = −Γ/ρs (A.5)

and add to yield an equation for volume balance

∇· V = −∇· φ(v− V) + Γ
∆ρ

ρfρs

(A.6)

where∆ρ = ρs − ρf . Substituting Eqs. (1.3), (A.1) and (A.2 into Eq. (A.6) yields

P
ξ

= ∇· K
µ

[∇P ∗ + ∇P + ∆ρg] + Γ
∆ρ

ρfρs

(A.7)

which after trivial rearrangement yields Eq. (2.4).

Equation (2.5) Equation (2.5) is simply Eq. (A.2) which follows directly from the definition
of P

Equation (2.6) Equation (2.6) follows from substituting Eq. (A.1) into Eq. (1.4) and can-
celling the terms involvingP (and noting that̄ρ− ρs = φ∆ρ).
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