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INTERSEISMIC PERIOD FOR
THE CASCADIA SUBDUCTION ZONE
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LOOKING AT “LONG-TERM” DEFORMATION

HORIZONTAL GPS RATES

a) Locations of the GPS Stations
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LOOKING AT “LONG-TERM” DEFORMATION
HORIZONTAL GPS RATES + TIDE-GAUGE & LEVELING UPLIFT RATES

b) Locations of the tide-gauges & leveling data
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FORWARD RATE-STATE FRICTION MODELS OF SSE

a) Geometry
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FORWARD RATE-STATE FRICTION MODELS OF SSE FIT THE GPS DATA

Computed average ETS slip Fit to the average GPS horizontal displacements
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AVERAGED OVER MANY ETS CYCLES, STRESS WITHIN THE SLOW SLIP
ZONE (30-40KM) IS NEARLY CONSTANT

A —— Long-term slip rate
35 + Average inter-SSE slip rate
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SAME RATE-STATE FRICTION MODELS OF THE INTERSEISMIC SLIP RATE
DO NOT FIT THE LONG-TERM RATES

Computed long-term slip rates e Uplift rates from tide gauges & leveling
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PHYSICS-BASED MODELS PREDICT TOO MUCH LOCKING IN THE GAP,
UP DIP THE ETS REGION. WHY?

- Bias due to use of homogeneous half-space Green'’s functions ?
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GAP CREEPING DUE TO VELOCITY-STRENGTHENING FRICTION
BEHAVIOR ?

a) Computed long-term slip rate profiles (mm/yr)
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GAP CREEPING DUE TO VELOCITY-STRENGTHENING FRICTION
BEHAVIOR ?

b) Predicted velocities for model with creep between 14 and 30km

e Horizontal rates (Variance Reduction = 95.8%) e Vertical rates (Variance Reduction = 27.3%)

50t 10 mml/yr 50t e 3 mm/yr
— observed K - ——— observed
— predicted I N (‘ \,, 5 — predicted
L/ ; (L
LY ¥ 1 Sy
49 F : e 49 s & g / ~“‘.\\\ (— S
o o > "I‘L(”% §7 S2:
= = - THR
© © 11
— 481 —1 48
47 47
125 ' {54 ‘ 1é3 ' 122 ' 1é5 l {é4 ‘ 1é3 l 1é2
Longitude

Longitude

19



PHYSICS-BASED MODELS PREDICT TOO MUCH LOCKING IN THE GAP,
UP DIP THE ETS REGION. WHY?

- Bias due to use of homogeneous half-space Green’s functions ? X
- Gap creeping due to velocity-strengthening friction behavior ? X



PHYSICS-BASED MODELS PREDICT TOO MUCH LOCKING IN THE GAP,
UP DIP THE ETS REGION. WHY?

- Bias due to use of homogeneous half-space Green’s functions ? X
- Gap creeping due to velocity-strengthening friction behavior ? X

Which slip rate distribution is required by the data?



a) Slip rate profiles (mm/yr) b) Map view of the slip rates for the best fitting model
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c) Predicted velocities for the best fitting model (velocity-strengthening region between 26 and 30km)

e Horizontal rates (Variance Reduction = 95.6%) e Vertical rates (Variance Reduction = 87.3%)
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INVERSIONS FOR INTERSEISMIC SHEAR STRESS RATES FIND NEGATIVE
SHEAR STRESS RATES TO EXPLAIN THE LARGE SLIP RATES IN THE GAP
AND THE ETS REGION [BRUHAT & SEGALL, 2016]

Inverted shear stress rates (kPa/yr) Corresponding slip rate profile (mm/yr)
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INVERSIONS FOR INTERSEISMIC SHEAR STRESS RATES FIND NEGATIVE
SHEAR STRESS RATES TO EXPLAIN THE LARGE SLIP RATES IN THE GAP

AND THE ETS REGION [BRUHAT & SEGALL, 2016]

e Vertical rates (Variance Reduction = 95.9%) Corresponding slip rate profile (mm/yr)
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RATE & STATE FRICTION
NUMERICAL MODELS

INVERSIONS FOR SHEAR
STRESS RATES

Fit the average ETS
displacements

No change in shear
stress in the ETS region

Fit the long-term rates

Require negative shear
stress rates within the
gap & ETS region

Change with time in
effective stress? Fault
strength?
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IMPLICIT ASSUMPTION

Can the interseismic transition depth change with time?
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IMPLICIT ASSUMPTION

Can the interseismic transition depth change with time?

Slip  s(z,t) = f(z,t)v™t

Slip rate % — f(z)t)voo
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IMPLICIT ASSUMPTION

Can the interseismic transition depth change with time?

Slip  s(z,t) = f(z,t)v™t
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IMPLICIT ASSUMPTION

Can the interseismic transition depth change with time?

Slip  s(z,t) = f(z,t)v™t
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TEMPORAL EVOLUTION OF THE LOCKING DEPTH
Numerical simulations from Jiang & Lapusta (2016)
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CRACK MODEL FOR THE INTERSEISMIC SLIP PROFILE

: 2~ Down-dip limit of the crack A\Slip
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CRACK MODEL FOR THE INTERSEISMIC SLIP PROFILE

Spatial variable ¢ = 1 — 2—2
a
For a crack with finite stress at the crack tip B vt -
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EFFECT OF THE PROPAGATION
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CRACK MODEL FOR THE INTERSEISMIC SLIP PROFILE

New method to derive expressions for stress drop, slip and slip rate

> Allows for the up dip propagation of the creeping region

> Massively underdetermined (as most geodetic inversions)

» Can be used to invert deformation rates using MCMC methods under specific
assumptions (c; = 0, stress characteristics in the ETS region, etc.) to look for extremal

models (e.g., bounds on propagation speed)

» Examples for Cascadia



Best fitting model (MCMC inversion)
Locking depth: 20.5km

APPLICATION TO CASCADIA
Non propagating crack, invert for c; (N=6)

Slip rate (mm/yr) Vertical rates (VR = 98.1%) Horizontal rates (VR = 92%)
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APPLICATION TO CASCADIA Best fitting model (MCMC inversion)
Locking depth: 21km

Pmpagatmg crack Up-dip propagation velocity: 33.4m/year
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APPLICATION TO CASCADIA
Posterior distributions
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APPLICATION TO CASCADIA
Models w/ no change in shear stress in the ETS region

Minimizing ||$~2(d — d)|| subject to %(g = ETS) =0

Stress rates do take into account the free surface effects
Assuming 9c;/ot = 0
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APPLICATION TO CASCADIA
Models w/ no change in shear
stress in the ETS region

Best fitting model (MCMC inversion)
Locking depth: 21.9km
Up-dip propagation velocity: 41m/year
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RATE & STATE FRICTION
NUMERICAL MODELS

INVERSIONS FOR SHEAR
STRESS RATES

Fit the average ETS
displacements

No change in shear
stress in the ETS region

Fit the long-term rates

Require negative shear
stress rates within the
gap & ETS region

Change with time in
effective stress? Fault
strength?
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RATE & STATE FRICTION
NUMERICAL MODELS

INVERSIONS FOR SHEAR
STRESS RATES

PROPAGATING CRACK

Fit the average ETS
displacements

No change in shear
stress in the ETS region

Fit the long-term rates

Require negative shear
stress rates within the
gap & ETS region

Change with time in
effective stress? Fault
strength?

Fit the long-term rates

Allows for models that
with negative shear
stress rate within the

gap but no change in the

ETS region

Gap acts as a region of
fault weakening.




RATE & STATE FRICTION INVERSIONS FOR SHEAR PROPAGATING CRACK

NUMERICAL MODELS STRESS RATES
Fit the average ETS Fit the long-term rates Fit the long-term rates
displacements
No change in shear Require negative shear Allows for models that
stress in the ETS region  stress rates within the with negative shear
gap & ETS region stress rate within the
gap but no change in the
ETS region
Change with time in Gap acts as a region of
effective stress? Fault fault weakening.
strength?
BRUHAT & SEGALL, JGR, 2016 . BRUHAT & SEGALL,

IN REVIEW
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CONCLUSIONS:

New method to estimate interseismic slip rates

Include the possibility for the creeping zone to propagate up dip
Between purely kinematic inversions and fully physics-based models

€ Possible mechanical explanations
Gap “locked” after deep rupture propagation, interseismic transition propagating up
due to reloading by deep creep [Jiang & Lapusta, 2016] ?

For Cascadia: current (?) locking depth (20-22km), steep slip rate gradient at
bottom of the locked region, and important slip deficit in gap & ETS region
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