USING DEFORMATION RATES IN NORTHERN CASCADIA TO CONSTRAIN TIME-DEPENDENT STRESS- AND SLIP-RATE ON THE MEGATHRUST

Lucile Bruhat Paul Segall Stanford University

1. What is the physical behavior of this "gap"?

[e.g., Hyndman & Wang (1995), Flück et al. (1997), Dragert et al. (2004), Chapman & Melbourne (2009), Wech & Creager (2011), Hyndman (2013)]

2. How deep can the megathrust rupture go? Can it propagate in the gap? in the ETS region?

1. What is the physical behavior of this "gap"?

[e.g., Hyndman & Wang (1995), Flück et al. (1997), Dragert et al. (2004), Chapman & Melbourne (2009), Wech & Creager (2011), Hyndman (2013)]

2. How deep can the megathrust rupture go? Can it propagate in the gap? in the ETS region?

1. What is the physical behavior of this "gap"?

[e.g., Hyndman & Wang (1995), Flück et al. (1997), Dragert et al. (2004), Chapman & Melbourne (2009), Wech & Creager (2011), Hyndman (2013)] 2. How deep can the megathrust rupture go? Can it propagate in the gap? in the ETS region?

LOOKING AT "LONG-TERM" DEFORMATION HORIZONTAL GPS RATES

c) Representative GPS position time series GPS data & linear trends P401 80 Northward displacement (mm) 40 ALBH P436 LKCP -80 2000 2004 ²⁰⁰⁸ Years 2012 2016 Detrended data & SSE fit 10 Northward displacement (mm) b c b b c c c c 0 **ALBH** 136 -70 2000 2004 2008 2012 2016

Years

LOOKING AT "LONG-TERM" DEFORMATION HORIZONTAL GPS RATES + TIDE-GAUGE & LEVELING UPLIFT RATES

Forward rate-state friction models of SSE

b) Depth distribution of effective normal stress $\bar{\sigma}$, D_c and rate and state coefficient (a-b)

Forward rate-state friction models of SSE fit the GPS data

Computed average ETS slip

Fit to the average GPS horizontal displacements

AVERAGED OVER MANY ETS CYCLES, STRESS WITHIN THE SLOW SLIP ZONE (30-40KM) IS NEARLY CONSTANT

SAME RATE-STATE FRICTION MODELS OF THE INTERSEISMIC SLIP RATE DO NOT FIT THE LONG-TERM RATES

Computed long-term slip rates

• Uplift rates from tide gauges & leveling

- Bias due to use of homogeneous half-space Green's functions ?

- Bias due to use of homogeneous half-space Green's functions ? imes

- Bias due to use of homogeneous half-space Green's functions ? 🗙
- Gap creeping due to velocity-strengthening friction behavior ?

GAP CREEPING DUE TO VELOCITY-STRENGTHENING FRICTION BEHAVIOR ?

b) Depth distribution of effective normal stress $\bar{\sigma}$ and rate and state coefficient (a-b)

GAP CREEPING DUE TO VELOCITY-STRENGTHENING FRICTION BEHAVIOR ?

b) Predicted velocities for model with creep between 14 and 30km

• Horizontal rates (Variance Reduction = 95.8%)

• Vertical rates (Variance Reduction = 27.3%)

- Bias due to use of homogeneous half-space Green's functions ? 🗙
- Gap creeping due to velocity-strengthening friction behavior ? 🗙

- Bias due to use of homogeneous half-space Green's functions ? imes
- Gap creeping due to velocity-strengthening friction behavior ? 🗙

Which slip rate distribution is required by the data?

c) Predicted velocities for the best fitting model (velocity-strengthening region between 26 and 30km)

- Bias due to use of homogeneous half-space Green's functions ? imes
- Gap creeping due to velocity-strengthening friction behavior ? 🗙

Which slip rate distribution is required by the data?

- Bias due to use of homogeneous half-space Green's functions ? imes
- Gap creeping due to velocity-strengthening friction behavior ? ×

Which slip rate distribution is required by the data?

Larger slip rates are necessary within both the gap and the ETS zone relative to the physics-based model with constant shear stress

- Bias due to use of homogeneous half-space Green's functions ? imes
- Gap creeping due to velocity-strengthening friction behavior ? 🗙

Which slip rate distribution is required by the data?

Larger slip rates are necessary within both the gap and the ETS zone relative to the physics-based model with constant shear stress

INVERSIONS FOR INTERSEISMIC SHEAR STRESS RATES FIND <u>NEGATIVE</u> <u>SHEAR STRESS RATES</u> TO EXPLAIN THE <u>LARGE SLIP RATES</u> IN THE GAP AND THE ETS REGION [BRUHAT & SEGALL, 2016]

Inversions for solutions as close as possible to constant stress

INVERSIONS FOR INTERSEISMIC SHEAR STRESS RATES FIND NEGATIVE SHEAR STRESS RATES TO EXPLAIN THE LARGE SLIP RATES IN THE GAP AND THE ETS REGION [BRUHAT & SEGALL, 2016]

Corresponding slip rate profile (mm/yr)

Inversions for solutions as close as possible to constant stress

RATE & STATE FRICTION NUMERICAL MODELS	INVERSIONS FOR SHEAR STRESS RATES
Fit the average ETS displacements	Fit the long-term rates
No change in shear stress in the ETS region	Require negative shear stress rates within the gap & ETS region
	Change with time in effective stress? Fault strength?

TEMPORAL EVOLUTION OF THE LOCKING DEPTH

Numerical simulations from Jiang & Lapusta (2016)

The locking depth migrates up dip \rightarrow the size of the locked region reduces w/ time

CRACK MODEL FOR THE INTERSEISMIC SLIP PROFILE

CRACK MODEL FOR THE INTERSEISMIC SLIP PROFILE

-

Spatial variable
$$\ \ \xi \ = \ 1 - rac{2z}{a}$$

For a crack with finite stress at the crack tip and driven by steady displacement:

$$\Delta \tau = \mu \frac{v^{\infty} t}{a(t)\pi} \xi(t) + \mu \sum_{i=2}^{\infty} c_i(t) T_i(\xi(t))$$

Slip
$$s = tg(\xi(t)) + a(t) \sum_{i=2}^{\infty} c_i(t) f_i(\xi(t))$$

Slip rate
$$\frac{ds}{dt} = g(\xi(t)) + a(t) \sum_{i=2}^{\infty} \frac{\partial c_i(t)}{\partial t} f_i(\xi(t)) + \frac{\partial a}{\partial t} \left[t \frac{u(\xi(t))}{a(t)} + \sum_{i=2}^{\infty} c_i(t) v(\xi(t)) \right]$$

Propagation effect

EFFECT OF THE PROPAGATION

CRACK MODEL FOR THE INTERSEISMIC SLIP PROFILE

New method to derive expressions for stress drop, slip and slip rate

- > Allows for the up dip propagation of the creeping region
- Massively underdetermined (as most geodetic inversions)
- Can be used to invert deformation rates using MCMC methods under specific assumptions (c_i = 0, stress characteristics in the ETS region, etc.) to look for extremal models (e.g., bounds on propagation speed)
- Examples for Cascadia

Application to Cascadia Non propagating crack, invert for c_i (N=6)

Best fitting model (MCMC inversion) Locking depth: 20.5km

APPLICATION TO CASCADIA Propagating crack

Best fitting model (MCMC inversion) Locking depth: 21km Up-dip propagation velocity: 33.4m/year

APPLICATION TO CASCADIA Posterior distributions

APPLICATION TO CASCADIA

Models w/ no change in shear stress in the ETS region

Minimizing
$$||\Sigma^{-1/2}(d-\hat{d})||$$
 subject to $\frac{\partial \Delta \tau}{\partial t}(\xi = ETS) = 0$

Stress rates do take into account the free surface effects Assuming $\partial c_i / \partial t = 0$

APPLICATION TO CASCADIA

Models w/ no change in shear stress in the ETS region

<u>Best fitting model (MCMC inversion)</u> Locking depth: 21.9km Up-dip propagation velocity: 41m/year

RATE & STATE FRICTION NUMERICAL MODELS	INVERSIONS FOR SHEAR STRESS RATES
Fit the average ETS displacements	Fit the long-term rates
No change in shear stress in the FTS region	Require negative shear stress rates within the

Change with time in effective stress? Fault strength?

gap & ETS region

RATE & STATE FRICTION NUMERICAL MODELS	INVERSIONS FOR SHEAR STRESS RATES	Propagating crack
Fit the average ETS displacements	Fit the long-term rates	Fit the long-term rates
No change in shear stress in the ETS region	Require negative shear stress rates within the gap & ETS region	Allows for models that with negative shear stress rate within the gap but no change in the ETS region
	Change with time in effective stress? Fault strength?	Gap acts as a region of fault weakening.

RATE & STATE FRICTION NUMERICAL MODELS	INVERSIONS FOR SHEAR STRESS RATES	Propagating crack
Fit the average ETS displacements	Fit the long-term rates	Fit the long-term rates
No change in shear stress in the ETS region	Require negative shear stress rates within the gap & ETS region	Allows for models that with negative shear stress rate within the gap but no change in the ETS region
	Change with time in effective stress? Fault strength?	Gap acts as a region of fault weakening.
 ➡ Bruhat & Sega 	LL, JGR, 2016 ———	Bruhat & Segall, in review

CONCLUSIONS:

- New method to estimate interseismic slip rates
 - Include the possibility for the creeping zone to propagate up dip
 - Between purely kinematic inversions and fully physics-based models
- Possible mechanical explanations
 - Gap "locked" after deep rupture propagation, interseismic transition propagating up due to reloading by deep creep [Jiang & Lapusta, 2016]?
- For Cascadia: current (?) locking depth (20–22km), steep slip rate gradient at bottom of the locked region, and important slip deficit in gap & ETS region

