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MODELING the earthquake cycle: to understand earthquake nucleation and propagation, how
and when tectonic deformation i1s accommodated, to better understand/explain observations.

Modeling challenges

« Multiscale features in
space & time.

« Unknown initial
conditions.

« Complex fault geometries/
structures.

« Material heterogeneties
and 1nelastic material
response.

San Andreas Fault

Recent Advances (incomplete list): Kaneko et al. (2011, coupled, heterog.), Barbot et al.
(2012, coupled, integrated), Aagaard et al. (2013, coupled, complex fault geometries),
Allison and Dunham (2017, nonlinear viscoelastic), Thompson and Meade.



Our Modeling Framework: Rate-and-state friction:
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Events nucleate spontaneously, with inertial effects captured through radiation damping.



2D Antiplane Motion

Governing equations with Hooke’s law:

0=V.-0 — 0=V-(C:¢) (1)

or (anisotropic)

0=2 [ulg’; = Mz%} +2 [ugg’; : m%} (2b)

for out-of-plane displacement u and shear modulus p .



Sedimentary Basins

Map of the Imperial Valley Fault
(Rockwell and Klinger, 2013).
1979 M6.5 event remained largely

buried, vs 1940 M7 event featured
extensive surface slip.

Schematic for model:
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Homogeneous:
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Slip profiles plotted in solid blue every 5 years during the interseismic period; in red
every second during rupture. Sub-basin events leave a shallow slip deficit. Faults
overlain with sediments can go unrecognized and can potentially host very large events.



Moving beyond the elastic assumption

Internal Structure of Principal Faults of the
North Branch San Gabriel Fault

(1) (2)

1) Undeformed Host Rock

(2) ()

2) Damaged Host Rock
Fault Zone 3) Foliated Zone } Fault &
4) Central ultracataclasite layer | ~2ult Core

Chester et al. (1993) Savage and Brodsky (2011)

Recent attention on the science of off-fault plasticity in order to understand the relationship
between the degree of off-fault yielding and mechanical properties of fault

zone material, how damage zones evolve with increasing cumulative slip and how these

damage zones affect subsequent rupture and alter slip, recurrence intervals, surface deformation
etc. How much tectonic off-set accommodated by plastic deformation? Can plastic behavior help
explain discrepancies in geodetic data (e.g. Lindsey et al., 2014).



Constitutive Laws for Plasticity

(a) 1 Elastic (b) T
Strain Hardening !
oyl Perfectly Plastic . _ ot
elastic domain

>€\ ~ Ok / 3

hardening modulus

Elastic domain
E, ={{0:F(o) <0}

for yield function F.



Constitutive Laws for Plasticity

Hooke’s Law: o = (C : (€ — €P) (3)
Flow rule: éfj = \P;,;(0) (4)

for magnitude of plastic strain rate A. P partitions plastic
strain rate between components.

Kuhn-Tucker & persistency
A>0, F<Z0, AF=0 )
AF =0 (6)



Drucker-Prager Plasticity

Yield function: F (0,7P) = T — (oy + h~P)
Flow rule: éfj = Alsij /27 + (8/3)di]
* equivalent plastic strain P

» deviatoric stress & second invariant s, T

» yield stress Oy
* hardening modulus

» plastic dilatancy &



Equilibrium equation:

Hooke’s law with elastoplastic tangent stiffness tensor
do = C(0) : de (7)

(Incremental) governing equations

0=V-do — 0=V (C%(0):de) (8)

For antiplane motion: a second order, nonlinear elliptic
PDE for the displacement increment du.



For D-P rate-independent plasticity, this reduces to:

0— 9 {Cepadu | Cep@du} 0 {Cepadu | Cepadu} 9)

Oy yy Oy Yz 0z 0z ZY Oy 2z 0z

Where the specifics components are, for example,

L4 it A =0,

Cep(()') = { 2 /=2
vy pon, /TS .
M= Th 7 it A >0

(9) maintains ellipticity during plastic flow iff

ep e epl? _ h
Cygczzz? - [Cyg _ 1+Mh/u >0

thus, hardening must be present.



Methodology

Return-mapping algorithm:

. trial
Schematic:
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« Spatial discretization with a finite difference method.

Time stepping: stresses, strains, and displacements are updated by solving equilibrium
with an iterative Newton method together with boundary conditions that impose slow,

tectonic loading and slip (in a manner consistent with rate-and-state friction), and the
return-mapping algorithm for consistent stresses.



Rate-and-state friction:

r =0, f(V,0), f(V,0) =asinh™" (5Fe/?)
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Rate-and-state parameters and depth-dependent yield stress oy = —(ox/3) sin(¢) + ¢ cos(¢)
for cohesion ¢ and internal friction angle ¢.



Verification Studies

Study 1: manufactured solution to elastic, anisotropic problem, with time stepping and r-s

friction.

Study 2: boundary value plastic-problem, comparison with FEM solution from OpenSees

(http://opensees.berkeley.edu), right Figure below (FEM solution in black dots).
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Earthquake cycles with plastic response
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every second during rupture.



Magnitude and extent of off-fault plastic strain
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Viscoplastic with
hardening: extent
and magnitude
saturate.

Viscoplastic
without
hardening: no
saturation (extent
increases ~100 m
per rupture).



How much off-set i1s accommodated by plastic strain?
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Most significant amount for
viscoplastic models without
hardening (~2 m per 10
ruptures, 10% of tectonic
deformation budget). If
SSD deficit of 3-19% exists
(Xu et al., 2016), then some
of this can be attributed to
plastic deformation.
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Discussion and current work " Ay —
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of model results with observables.

*  With Jeremy Kozdon (Naval Postgraduate
School). We are developing a new modeling " propagation paths -
framework to simulate cycles (with full .‘ M subevent

dynamics) in complex geometries, based on 2010 El Mayor-Cucapah (EMC), Fletcher et al. (2016)
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Collaborative Effort

TAG proposal in review with SCEC (16 co-Pls) in order to:

Conceptual Model of Fault Zone

. p—
~ B
[

Fault Geometry & Material

Fault Friction & Bulk Rheology

l

Computational Methods
for Simulating
Earthquake Sequences
and Aseismic Slip

Observables

Ground Shaking
Dynamic Rupture

Coseismic Period {seconds)

!

Aseismic Deformation
Fault Locking & Creep

Interseismic Period (years)

- understand how earthquakes nucleate,
propagate and terminate by developing
models that can simulate the slow,
interseismic period between earthquakes,
dynamic rupture, and afterslip, all of
which are characterized by widely
varying scales.

- discuss and further advance our
computational capabilities, to promote
robust results and reproducible science,
and to lend experience and verifiable
tools for newcomers to the field.

Please contact me if you
are interested in being a
part of this group:
berickson@pdx.edu
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