Geodesy for understanding seismic hazard

Eileen Evans U.S. Geological Survey CIG CDM Workshop 28. June, 2017

Imaging active deformation in the western United States The earthquake cycle

Interseismic velocities

Imaging active deformation in the western United States The earthquake cycle

Coseismic deformation

Coseismic displacements

2011 M_W =9.0 Tohoku earthquake, Japan

1999 M_w=7.4 Izmit earthquake, Turkey

Imaging active deformation in the western United States The earthquake cycle

Postseismic deformation

Postseismic displacements

2011 Mw=9.0 Tohoku earthquake, Japan

Imaging active deformation in the western United States The earthquake cycle: a single station

Interseismic deformation Eastern California shear zone

Geodetic rates ≠ geologic rates

Eastern California shear zone Dense block model

Eastern California shear zone Blocks defined by Euler vectors

Want to find a solution in which many blocks have identical rotation vectors

Eastern California shear zone Total variation regularization

Eastern California shear zone Block model solution methods

Total variation regularization (TVR)

$$\min \| \mathbf{G} \mathbf{\Omega} - \mathbf{d} \|_{2} + \lambda \| \mathbf{D} \mathbf{\Omega} \|_{1}$$

Fit to data

$$\operatorname{Fit to data}$$
rotation vector
differences

$$\mathbf{s} \, \mathbf{L}_{2} \, \mathbf{norm:} \| \mathbf{v} \|_{2} = \left(\sum_{i=1}^{N} |v_{i}|^{2} \right)^{\frac{1}{2}} \quad \mathbf{and} \, \mathbf{L}_{1} \, \mathbf{norm:} \| \mathbf{v} \|_{1} = \sum_{i=1}^{N} |v_{i}|$$

 \mathbf{D} : linear differential operator

Use

Solutions are grouped with many identical values

 λ controls strength of grouping (high λ is very grouped)

Can be solved with convex optimization methods (*Jenson et al.*, 2011; *Boyd and Vandenberghe*, 2004)

Eastern California shear zone Back to the model

Eastern California shear zone ECSZ fault slip rates

Which geodetic model is MOST consistent with the geologic slip rates?

Fault segment	Geologic rate (mm/yr)	Reference
Pinto Mountain	-2.8 ± 2.5	Anderson, 1979; Petersen and Wesnousky, 1994
Camp Rock	≤1.4 ± 1.4	Oskin et al., 2008
Death Valley–Furnace Creek	3.1 ± 0.4	Frankel et al., 2007b
Garlock	-5.3 +1/-2.3	Ganev et al., 2012
Helendale	0.8 ± 0.8	Oskin et al., 2008
Ludlow	≤0.4 ± 0.4	Oskin et al., 2008
Owens Valley	3.7 ± 1.8	Frankel et al., 2007b
Pisgah	1.0 ± 0.5	Oskin et al., 2008
Death Valley-Red Wall Canyon	4.5 +1.6/-1.4	Frankel et al., 2007a
Lenwood	≤0.8 ± 0.4	Oskin et al., 2008
Calico	1.8 ± 0.7	Oskin et al., 2007

(Evans et al., 2016)

Eastern California shear zone Reference model

Which geodetic model is MOST consistent with the geologic slip rates?

Fault segment	Geologic rate (mm/yr)	Reference
Pinto Mountain	-2.8 ± 2.5	Anderson, 1979; Petersen and Wesnousky, 1994
Camp Rock	≤1.4 ± 1.4	Oskin et al., 2008
Death Valley–Furnace Creek	3.1 ± 0.4	Frankel et al., 2007b
Garlock	-5.3 +1/-2.3	Ganev et al., 2012
Helendale	0.8 ± 0.8	Oskin et al., 2008
Ludlow	≤0.4 ± 0.4	Oskin et al., 2008
Owens Valley	3.7 ± 1.8	Frankel et al., 2007b
Pisgah	1.0 ± 0.5	Oskin et al., 2008
Death Valley-Red Wall Canyon	4.5 +1.6/-1.4	Frankel et al., 2007a
Lenwood	≤0.8 ± 0.4	Oskin et al., 2008
Calico	1.8 ± 0.7	Oskin et al., 2007

(Evans et al., 2016)

Eastern California shear zone Geologic comparison

(Evans et al., 2016)

Eastern California shear zone Calico fault

(Evans et al., 2016)

(*McGill et al.*, 2015)

Geodetic uncertainties Variability indicates high model uncertainty

The fundamental challenge 33 slip rate models

Compare models How much do slip rates vary?

Two interpretations of the same fault system:

Compiling slip rates:

- Do these slip rates agree?
- How much do they disagree?
- Disagreement represents inherent uncertainty in the fault system geometry (and other modeling parameters)

Proposed solution: compare slip rates on a grid

Compare models How much do slip rates vary?

Two interpretations of the same fault system:

Compiling slip rates:

- Do these slip rates agree?
- How much do they disagree?
- Disagreement represents inherent uncertainty in the fault system geometry (and other modeling parameters)

Proposed solution: compare slip rates on a grid

Compare models How much do slip rates vary?

Compare models For every study, for every grid cell

Do slip rates from Study 1 and Study 2 result in the same spatially averaged deformation of the cell? Decompose every study into **spatially averaged** slip on 2 perpendicular structures in every grid cell:

4 components of slip for every study, in every cell

Compare models Mean and standard deviation of slip rate

Compare models Mean and standard deviation of slip rate

Compare models Evaluate uncertainty

Standard deviation proxy for model uncertainty:

- Mean standard deviation ~1.5 mm/yr
- Highest in complex fault systems with relatively few models (northern San Andreas, transverse ranges)
- Lowest where there are fewest models, and central San Andreas
- Target locations for future research

3

plate-boundary parallel opening

Compare models Geologic vs. geodetic

(Evans, submitted)

Compare models Geologic vs. geodetic

Compare models Potency accumulation rate

Total accumulation rate:

- M ≈ 8.1 earthquake every 100 years (10 km locking depth, 30 GPa shear modulus).
- M ≈ 8.0 released in the last 100 years (from ANSS catalog)
- 95% of potency accumulation rate occurs in 52% of the active area (most slip occurs on the fastest faults)

(Evans, submitted)

Summary model Project onto UCERF faults

Project average slip rates back onto UCERF faults to produce a community average fault model, with model uncertainties

2 slip components produce an estimate of "off modeled-fault" deformation

Summary model Project onto UCERF faults

Community average geodetic slip rates projected onto UCERF faults:

Summary model Project onto UCERF faults

And model uncertainties:

Summary model Off modeled-fault deformation

Off modeled-fault (OMF) deformation

- **28%** total summary deformation does not project onto UCERF faults
- Most (75%) OMF deformation occurs adjacent to major faults
- OMF deformation may often be a consequence of epistemic uncertainty in geodetic slip rate models

Seafloor geodesy Is Cascadia locked at the trench?

Central Peru: Yes, within $\leq 2 \text{ km}$

Northern Honshu: temporally variable

Cascadia: ???

Dave Chadwell (chadwell@ucsd.edu)

Gagnon et al., 2005

Seafloor geodesy Is Cascadia locked at the trench?

Locking rates from *Pollitz and Evans, 2017*

Locking rates from *McCaffrey et al., 2013*

- To resolve locking: consider block model with embedded Cascadia subduction zone
- H is information entropy (*Shannon*, 1948), a measure of unpredictability, or average information content
 - $\Delta H = H_{\text{onshore}} H_{\text{new station}}$
- First minimum ΔH (most new information) on Juan de Fuca plate
- Subsequent stations along trench
 - First onshore location after 23 offshore

- To resolve locking: consider block model with embedded Cascadia subduction zone
- H is information entropy (*Shannon*, 1948), a measure of unpredictability, or average information content
 - $\Delta H = H_{\text{onshore}} H_{\text{new station}}$
- First minimum ΔH (most new information) on Juan de Fuca plate
- Subsequent stations along trench
 - First onshore location after 23 offshore

Geodesy for understanding earthquake hazards Conclusions

- Geodesy uniquely capable of observing strain accumulation rates and anticipating earthquake hazards
- Eastern California shear zone
 - Block model containing 7 ECSZ blocks fits GPS velocities with MRV = 1.5 mm/yr, and is most consistent with geologic slip rates
 - Persistent slip rate discrepancies remain on the Calico and Garlock faults
- California slip rate summary
 - Leverage existing research for seismic hazard models
 - Generate a summary model of geodetic slip rates: ~1.5 mm/yr model uncertainty
 - "off-fault" deformation may often be a product of epistemic uncertainty
- Seafloor geodesy
 - No quantity of onshore observations can provide the information gain of a single offshore observation