Coupled flow and geomechanics of petroleum reservoirs, aquifers and faults

gemlab.usc.edu

Birendra Jha Assistant Professor, Petroleum Engineering MFD Chemical Engineering and Materials Science University of Southern California

Computational modeling of flow, transport and deformation

People

- Induced earthquildent
- Leakage along fa
- Hydraulic fractur
- Geothermal ene
- Underground ga
- Enhanced hydro injection

Manjunath GL

Multiscale mechanical behavior of materials ranging from engineering materials to geomaterials. MS and PhD from Indian Institute of Technology Madras, India.

M.S. Students

Injection-Induced Earthquakes

William L. Ellsworth

Science JULY 2013

Natural or induced?

NEWS OF THE WEEK

16 JANUARY 2009 VOL 323 SCIENCE www.sciencemag.org SEISMOLOGY A Human Trigger for the Great Quake of Sichuan?

Natural disasters are often described as "acts of God," but within days of last May's devastating earthquake in China's Sichuan Province, seismologists in and out of China were quietly wondering whether humans might have had a hand in it. Now, the first researchers have gone

EARTHQUAKES

Human-induced shaking

In 2011, a modest earthquake in southern Spain seriously damaged the city of Lorca. deformation suggests that the quake was caused by rupture of a shallow fault patch pumping of water from a nearby aquifer.

Jean-Philippe Avouac

Induced earthquakes mechanisms

Healy et al., *Science* 1968 Segall, *JGR* 1985 Chander and Kalpana, *EG* 1997

Multiphase fluid flow and geomechanics

Biot, *JAP* 1941 Rice et al, *RGSP* 1976 Coussy, 1995

Oil, water, gas have different pressures and densities.

Governing equations

Force balance (quasi-static):

$$\nabla \cdot \boldsymbol{\sigma} + \rho_b \boldsymbol{g} = 0$$
 $\rho_b = (1 - \phi)\rho_s + \phi \sum_{\alpha} \rho_{\alpha}$

Fluid mass balance:

$$\frac{\partial}{\partial t} \left(\rho_{\alpha} \sum_{\beta} \left(N_{\alpha\beta} + \frac{b_{\alpha} b_{\beta}}{K_{dr}} \right) p_{\beta} \right) + \frac{1}{K_{dr}} \frac{\partial}{\partial t} \left(\rho_{\alpha} b_{\alpha} \sigma_{v} \right) + \nabla \cdot \boldsymbol{w}_{\alpha} = \rho_{\alpha} f_{\alpha},$$

 $\alpha,\beta~$ = Oil, water, gas

Multiphase fluid flow and geomechanics

Coupling between flow and deformation through parameters (poroelastic properties) and processes (PDE terms)

Geomechanics of a fault

Effective normal stress:
$$\sigma'_n = \sigma_n - bp$$

Friction stress: $au_f = \mu_f \sigma'_n$

Mohr-Coulomb theory

Shear failure criterion: $\tau \geq \tau_f$

Coulomb Failure Function:

$$CFF = \tau - \mu_f \sigma'_n$$

Induced seismicity mechanisms

Tendency to slip if:

$$\Delta \mathrm{CFF} = \Delta \tau - \Delta \left[\mu_f (\sigma_n - bp) \right] > 0$$

 $\begin{array}{ll} \Delta \tau > 0 & (\text{poroelastic loading}) \\ \Delta \sigma_n < 0 & (\text{poroelastic unloading}) \\ \Delta p > 0 & (\text{fluid injection}) \\ \Delta \mu_f < 0 & (\text{fault weakening}) \end{array}$

Water extraction from unconfined aquifer

$$\Delta \text{CFF} = \Delta \tau - \Delta \left[\mu_f (\sigma_n - bp) \right] > 0$$

 $\begin{array}{ll} \Delta \tau > 0 & (\text{poroelastic loading}) \\ \Delta \sigma_n < 0 & (\text{poroelastic unloading}) \\ \Delta p > 0 & (\text{fluid injection}) \\ \Delta \mu_f < 0 & (\text{fault weakening}) \end{array}$

Hydrocarbon production from confined reservoir

$$\Delta \text{CFF} = \Delta \tau - \Delta \left[\mu_f (\sigma_n - bp) \right] > 0$$

 $\begin{array}{ll} \Delta \tau > 0 & (\text{poroelastic loading}) \\ \hline \Delta \sigma_n < 0 & (\text{poroelastic unloading}) \\ \Delta p > 0 & (\text{fluid injection}) \\ \Delta \mu_f < 0 & (\text{fault weakening}) \end{array}$

Fluid injection into a confined reservoir

$$\Delta \text{CFF} = \Delta \tau - \Delta \left[\mu_f (\sigma_n - bp) \right] > 0$$

 $\begin{array}{ll} \Delta \tau > 0 & (\text{poroelastic loading}) \\ \Delta \sigma_n < 0 & (\text{poroelastic unloading}) \\ \hline \Delta p > 0 & (\text{fluid injection}) \\ \Delta \mu_f < 0 & (\text{fault weakening}) \end{array}$

Fault slip can lead to leakage

Fluid leakage if: $\Delta k_f > 0$

 $\begin{array}{l} \Delta k_{f} = f \text{(fault slip, fault compression)} \\ \Delta \tau > 0 \quad (\text{poroelastic loading}) \\ \Delta \sigma_{n} < 0 \quad (\text{poroelastic unloading}) \\ \Delta p > 0 \quad (\text{fluid injection}) \\ \hline \Delta \mu_{f} < 0 \quad (\text{fault weakening}) \end{array}$

Key questions in subsurface energy production

- How much can be extracted/stored, and at what rate?
- What is the risk of induced seismicity? What is the risk of leakage?
- How do we mitigate the risk?

Geomechanical modeling of reservoirs with faults is essential.

Settari and Mourits, *SPEJ* 1998; Bourne et al., *J Struct Geol* 2001 Birkholzer and Zhou, *IJGGC* 2009; Morris et al., *IJGGC* 2011; Cappa and Rutqvist, *GRL* 2011; Jha and Juanes, *WRR* 2014

Computational model

Discretization

- Stable, convergent scheme (FEM-FVM)
- Single, unstructured computational grid

Pressure node

Displacement node

Jha and Juanes, *Acta Geotech.* 2007 Kim, Tchelepi and Juanes, *CMAME* 2011 Jha and Juanes, *WRR* 2014

Coupling strategies

Efficient, unconditionally stable sequential solution scheme

New time step
Sequential
iteration
Flow
Flow
Fix
$$\frac{\partial \sigma_v}{\partial t}$$

 $\left(\frac{b^2}{K_{dr}} + \frac{1}{M}\right)\frac{\partial p}{\partial t} + \frac{b}{K_{dr}}\frac{\partial \sigma_v}{\partial t} + \nabla \cdot \boldsymbol{v} = f$
Nechanics known
Mechanics p_g, S_w
Yes
Converged?
No

Aagaard, Knepley and Williams, JGR 2013

Computational model

Fault is discretized with interface finite elements.

• Lagrange multiplier approach to solve the contact problem

$$\begin{bmatrix} \mathbf{K} & \mathbf{C}^{\mathsf{T}} \\ \mathbf{C} & \mathbf{0} \end{bmatrix}^{(k)} \begin{bmatrix} \delta \mathbf{U} \\ \delta \mathbf{L} \end{bmatrix}^{(k)} = - \begin{bmatrix} \mathbf{R}_{u} \\ \mathbf{R}_{l} \end{bmatrix}^{(k)}$$

U is displacement.*L* is Lagrange multiplier (fault traction)

Aagaard, Knepley and Williams, *JGR* 2013 Jha and Juanes, *WRR* 2014

Coupled multiphase flow and geomechanics simulator

- Computationally efficient sequential solution
- Sophisticated formulation for fault deformation and slip
- Flow along and across fault, fracture propagation
- Viscoelastic, elastoplastic, and viscoplastic rheology. Rate and State fault friction
- Field-scale (unstructured grid, complex production-injection scenarios, parallel computing)

Post mortem analysis of the 2011 Lorca earthquake

LETTERS

The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading

Pablo J. González¹*, Kristy F. Tiampo¹, Mimmo Palano², Flavio Cannavó² and José Fernández³

Earthquake initiation, propagation and arrest are influenced by fault frictional properties^{1,2} and preseismic stress^{3,4}. Studies of triggered and induced seismicity⁵⁻⁷ can provide unique

nature

geoscience

Methods). Two different ENVISAT descending satellite tracks (12 and 16) imaged the area before and after the event, providing estimates of the displacement field from two different look angles

PUBLISHED ONLINE: 21 OCTOBER 2012 | DOI: 10.1038/NGE01610

- 1960-2010 groundwater extraction
- Mw = 5.1 in May 2011

Effect of water withdrawal - Conceptual model

Drop in water table in aquifer: Δz

Unloading of basement:

$$\Delta \boldsymbol{\sigma} = \boldsymbol{f}(\phi \rho_w \Delta z A, \dots)$$

Drop in pressure in basement: $\Delta p = \Delta p_c + \Delta p_d$ (Pore expansion + pressure diffusion)

Previous interpretation

(Gonzalez et al., *Nature Geosci.* 2012 de Michele et al., *Seism. Res. Lett.* 2013)

- Ignored coupling between flow and deformation
- Ambiguous regarding which fault sourced the earthquake

Can we ignore flow-deformation coupling?

Which fault ruptured and how?

Computational model

Jha et al, AGU 2013

Drop in pressure and water table

Subsidence due to groundwater withdrawal

Jha et al, AGU 2013

Decrease in water table and ground subsidence

Water table data is from a few wells.

Change in fault stability due to water extraction

Tendency to slip if: $\Delta CFF = \Delta \tau - \Delta [\mu_f(\sigma_n - bp)] > 0$

AMF fault is actually stabilized.

The 2012 Emilia-Romagna earthquakes

• Sequence of earthquakes (M_w = 6, M_w = 5.8) in May 2012 near the Cavone oil field in Italy

- Raised the question: *Was it induced by production/injection?*
- We address this question by means of computational modeling of coupled flow and geomechanics, integrating geologic constraints, seismic observations, and historical production

Effect of production - Conceptual model

Tendency to slip if:

$$\Delta CFF = \Delta \tau - \Delta \left[\mu_f (\sigma_n - bp) \right] > 0$$

 $\begin{array}{ll} \Delta \tau > 0 & (\text{poroelastic loading}) \\ \hline \Delta \sigma_n < 0 & (\text{poroelastic unloading}) \\ \Delta p > 0 & (\text{fluid injection}) \\ \Delta \mu_f < 0 & (\text{fault weakening}) \end{array}$

The Cavone oilfield

Map view

- Reservoir is compartmentalized by several faults.
- Strong aquifer support from underneath the reservoir.
- Oil production started in 1980. Injection of produced/ waste water began in 1993. 16 producers, 1 injector.

Regional seismicity

Seismicity on regional faults

Seismicity data from Jan 2011 – Feb 2013

Computational model

Structural model

Reservoir surfaces

Fault

Geomechanical grid

Jha et al, *AGU* 2014

Reservoir pressure changes due to production and injection

Shear and normal fault tractions change due to prod/inj

Evolution of pressure and stress on fault

- Increase in Coulomb stress not enough to trigger seismicity
- Injection stabilized the fault.

Seismicity induced by CO₂ injection

Can CO₂ injection induce seismicity? Largest magnitude?

Computational model

Over-pressurization due to injection

Pressure rises in the fault block where the injector is located.

 CO_2 accumulates near the top because of buoyancy.

Over-pressurization due to injection

Fault pressure

Pressure on the fault also increases in the reservoir depth interval.

Fault slips due to over-pressurization

Fault slips due to over-pressurization

Slip area gives magnitude of seismicity

Slip direction gives directivity of seismic energy released

Depth profiles of pressure and stresses along the fault

Stress paths of specific points on the fault

Influence of meteorological cycle in midcrustal seismicity of the Nepal Himalaya

Kundu et al., JAES 2017

Evaporation induced unloading and snowfallinduced loading of the MHT fault

Kundu et al., JAES 2017; Bettinelli et al., *EPSL*, 2008 Time lag between monsoon rainfall (summer) and mid-crustal seismicity (winter)

Pressure change = change due to diffusion + change due to poroelastic deformation

Coupled flow and geomechanical model

Three sections of MHT

Flat section Ramp section Aseismic section

Rainfall load from Equivalent Water Height

Induced changes in fault tractions

Conclusions

Computational modeling of coupled flow and geomechanics is a powerful tool:

- Provides mechanistic explanation of seismicity, fluid flow, and ground deformation observed around reservoirs
- Identifies energy and groundwater extraction strategies that can mitigate seismic risk

Underground gas storage

Side view

Store in summer, produce in winter. How much can be stored and how fast?

Finite element modeling and simulation

Top view

Compare model results with satellite data

