Seasonal Loading Modulating Seismicity on California Faults

Christopher W Johnson

Roland Bürgmann (UC Berkeley)Yuning Fu(Bowling Green SU)Fred Pollitz(USGS Menlo Park)Pierre Dutilleul(McGill Uni.)

cGPS PBO Station P314 http://www.earthscope.org

Berkeley Seismological Laboratory

California Deformation and Uplift

NA – Pacific Plate Boundary Transform faulting / Diffuse extension Transpressional uplift in Coast Ranges Sierra Nevada range-front faulting Mantle upwelling and delamination Erosional unloading

Eastern Sierra Nevada

California Deformation and Uplift

Major Features Delineated

- San Andreas Fault system
- Sierra Nevada Great Valley microplate
- Central Valley pumping
- Long-term post-seismic signal

Bill Hammond, UNR, pers. comm. MIDAS vel. solution

Seasonal Deformation Vertical GPS Time Series

^{6/29/17} Christopher Johnson

Seasonal Deformation Vertical GPS Time Series

Seasonal Deformation Vertical GPS Time Series

Climatic Changes Observed in Loading

Lake Oroville, 19 August 2014 Drought Crisis

UNR GPS NA12 solution

Lake Oroville, 11 February 2017 Dam Crisis ~200k people evacuated

6/29/17 Christopher Johnson

http://geodesy.unr.edu

Climatic Changes Observed in Loading

Lake Oroville, 19 August 2014 Drought Crisis

Lake Oroville, 11 February 2017 Dam Crisis ~200k people evacuated

Processed by the Nevada Geodetic Laboratory. Plotted on 2017-Mar-20. Last data on 2017-Mar-04.

http://geodesy.unr.edu

6/29/17 Christopher Johnson

What do we want to learn?

1/ Is Seasonal Hydrological Loading Modulating Seismicity?

Are faults responding to stress perturbations with annual periods?

Is the crust critically stressed?

What is the failure mechanism for earthquake nucleation?

2/ Are Other Natural Deformation Sources Contributing?

Seasonal Loading

Seasonal Loading Modulating Seismicity on California Faults

- i. Motivation Annual Loading Cycles
 - i. Nepal, Japan, and California
- ii. Seasonal Loading and Deformation
 - i. Modeling Efforts
 - ii. Stress calculations
- iii. Stress and Seismicity Analysis
 - i. Is Seasonal Hydrological Loading Modulating Seismicity?
 - ii. Are Other Loading Sources Contributing?

Water/Snow Loading Examples

- Snow loading in Japan
- Interseismic strain suppressed
- Less M>7 events in winter

Water/Snow Loading Examples

- Gravity inferred seasonal water change in the Ganges Basin
- ~4kPa stress change
- Stacked seismicity

Bettinelli et al., 2008

Water/Snow Loading Examples

- Estimated Water Thickness
- Seasonal Deformation in California

 ~1.5 kPa Stress Estimate
- Stacked seismicity along SAF

Periodicity in Seismicity Records Evidence for Stress Modulation

Dutilleul, Johnson, Bürgmann, et al., JGR, 2015

Annual Periodicity

Dutilleul, Johnson, Bürgmann, et al., JGR, 2015

Seasonal loading modulating seismicity on California faults

- i. Motivation Annual Loading Cycles
 - i. Nepal, Japan, and California
- ii. Seasonal Loading and Deformation
 - i. Modeling Efforts
 - ii. Stress calculations
- iii. Stress and Seismicity Analysis
 - i. Is Seasonal Hydrological Loading Modulating Seismicity?
 - ii. Are Other Loading Sources Contributing?

Elastic Load Model

- Effective Water Storage estimated from vertical GPS displacement
- GPS Stations in the Central Valley omitted
- Invert displacement for mass on surface and estimate water storage

Effective Water Storage

Derived using vertical GPS displacement following Argus et al., 2014 on 0.25° x 0.25° grid

6/29/17 Christopher Johnson

Johnson, Fu, and Bürgmann, Science 2017

GRACE / GLDAS Comparison

- Gravity Measurements to Infer Water Storage
- Composite models

Deformation Modeling

- Assume Linear Elastic
- Calculate Stress at 8 km Depth $\sigma_{ij} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$
- Rotate to Failure Plane
- Shear ($\sigma_{\rm S}$) and Normal ($\sigma_{\rm N}$)
- Δ **Coulomb** = $\Delta \sigma_{s}$ + $\mu \Delta \sigma_{N}$

 X'_3

Seasonal loading modulating seismicity on California faults

- i. Motivation Annual Loading Cycles
 - i. Nepal, Japan, and California
- ii. Seasonal Loading and Deformation
 - i. Modeling Efforts
 - ii. Stress calculations
- iii. Stress and Seismicity Analysis
 - i. Is Seasonal Hydrological Loading Modulating Seismicity?
 - ii. Are Other Loading Sources Contributing?

NCSS Focal Mechanisms

ETAS Declustering 2006-2014 Exclude geothermal & volcanic Mc ~ 2.0 (w/ 0.25 yr window) ETAS 2D (Zhuang et al., 2002)

Johnson, Fu, and Bürgmann, Science 2017

Is Seasonal Hydrological Loading Modulating Seismicity?

The seasonal stress change on the focal plane

Johnson, Fu, and Bürgmann, Science 2017

Percent excess M≥2.0 seismicity

Excess Seismicity N_{ex} **Plot**

 $N_{ex} = (N_{Act} - N_{Exp}) / N_{Exp} * 100$

 N_{Act} = stress at event time

 N_{Exp} = Uniform distribution of 250 random events times for stress cycle

Percent excess M≥2.0 seismicity

Excess Seismicity N_{ex} Plot

 $N_{ex} = (N_{Act} - N_{Exp}) / N_{Exp} * 100$

 N_{Act} = stress at event time

N_{Exp} = Uniform distribution of 250 random events times for stress cycle

For all times with ~-1 kPa shear stress decrease ~16% less events

-1.9 kPa is minimum shear stress in the population

Percent excess M≥2.0 seismicity Shear Stress Amplitude and Rate

Failure Mechanism

- Critically Stressed
- Increase σ_1 or Decrease in σ_3
 - Oblique / Dip-slip Optimally Oriented
- Low strength, weak fault
 - Strike slip small shear stress change
 - Shallow SAF µ=0.15 (Lockner et al., 2011)

Lab and Model Comparison

Short period loading Stress Amplitude

6/29/17 Christopher Johnson

Beeler and Lockner, 2003

Water Loading Seasonal Stresses on the UCERF3 Community Fault Model

Positive Stress Favors Slip on the Fault

6/29/17 Christopher Johnson

UCERF3 fault model: Field (BSSA, 2014)

Average Monthly Stress Seismicity (1781-2012) M≥5.5

Are Other Loading Sources Contributing?

- Surface Water
- Atmosphere
- Temperature
- Ocean

- Non tidal Ocean
- Earth Body Tides
- Earth Pole Tides

Are Other Loading Sources Contributing?

Johnson, Fu, Bürgmann, in prep

Loading Contribution on SAF

Amplitude and Time Lag w.r.t. Total Loading

Johnson, Fu, Bürgmann, in prep

6/29/17 Christopher Johnson

What Load Contributes the Most?

Failure Mechanism

- Critically Stressed
- Increase σ_1 or Decrease in σ_3
 - Oblique / Dip-slip Optimally Oriented
- Low strength, weak fault
 - Strike slip small shear stress change
 - Shallow SAF µ=0.15 (Lockner et al., 2011)

NCSS Focal Mechanisms

- M≥1.5 1984-2015 (69,296)
- Remove Geysers & LVC 50,716)
- Nearest Neighbor Distance (η)

$$\eta_{ij} = T_{ij}R_{ij}$$
$$T_{ij} = t_{ij}10^{-qbm_i}$$
$$R_{ij} = (r_{ij})^{d_f}10^{-(1-q)bm_i}$$

- Scale the interevent time and hypocentral distance with magnitude
- Remove events log η < -4.8
- Retain 28,121

Background Stress Orientation

Invert using high quality focal mechanisms

No amplitude information

S_{Hmax} Azimuth shown

Colored by Tensor Shape Describes the Rupture Style

Project Seasonal Stress into Principal Orientations

Test for Excess Seismicity

ANSS Catalog M≥1.7

ETAS Declustering 2006-2014 Exclude geothermal & volcanic N = ~24,000 Mc ~ 1.7 (w/ 0.25 yr window) ETAS 2D (Zhuang et al., 2002)

Excess Seismicity

1/ Is Seasonal Hydrological Loading Modulating Seismicity?

Are faults responding to stress perturbations with annual periods? Hydrological loading is a large contributing factor in the modulation of earthquakes from the annual stress cycles

Is the crust critically stressed? Excess seismicity from a 1-5 kPa

What is the failure mechanism for earthquake nucleation? Positive correlation with peak stress amplitude suggests an instantaneous threshold failure stress. Positive correlation with peak stressing rate suggests agrees with lab and model results

2/ Are Other Natural Deformation Sources Contributing?

All natural loading cycles should be considered when analyzing seasonal stress cycles. Water and Pole-tides are largest.

Seismicity indicates more events when loading align with ambient background stress orientation.

Thank You Questions?

