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•  Greatly simplify and speed up modeling of distributed deformation

•  Develop models of earthquake cycles in the lithosphere-asthenosphere system

•  Investigate the effects of local rheology on long-term fault behavior



 Overview 
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1) Deep Deformation 
Ø Classical view of the seismogenic zone
Ø  Transition from localized to distributed deformation

2) Kinematics of Distributed Deformation
Ø Quasi-static solutions for finite strain volumes

3) Numerical modeling of earthquake cycles
Ø  Earthquake cycles in the lithosphere-asthenosphere system
Ø  Evolution of fault zone rheology



 How to define the seismogenic zone? 
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Classic seismogenic zone defined by the depth extent of microseismicity and/or the fault locking 
depth

Likely corresponds to  transition in thermal, frictional, hydraulic and structural properties

Recent observations show that the width of the seismogenic zone may vary along a fault section over 
long-time scales:

Ø  Tsunami earthquakes which rupture further up-dip (Hubbard et al., 2015)
Ø  Through-lithospheric ruptures (e.g. 2012 Mw 8.6 Wharton Basin earthquake ( Wei et al., 2013))

2012 Mw 8.6 Wharton Basin earthquake 

The depth distribution of the seismic 
moment (Wei et al., 2013) and the 
average stress drop of 17 MPa (Hill et al., 
2015) suggests a thick lithosphere.
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 Deep Slip and Locking Depth 
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Jiang & Lapusta (2016) 

Deep slip from large earthquakes can extend the boundary between creeping and locked 
regions.

Ø  Enhanced coseismic weakening can extend ruptures to regions that are considered 
frictionally stable
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 Transition in Fault Zone Structure 
With increasing depth we expect,

Ø  Transition to more stable, rate-strengthening behavior
Ø  Delocalization of deformation

Fault zone structure and localization of shear is critical for shear heating 
efficiency and enhanced coseismic weakening
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How deep can earthquakes rupture?

What controls variability in rupture depth?

Can they penetrate into deeper, more stable areas?

How would this affect the occurrence of future events?

 Motivating Questions 
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How deep can earthquakes rupture?

What controls variability in rupture depth?

Can they penetrate into deeper, more stable areas?

How would this affect the occurrence of future events?

Goals:
Examine the competition between fault slip and distributed deformation near 
the deeper extension of the fault zone.

Ø  Simulate earthquake cycles incorporating both mechanisms within 
     the lithosphere-asthenosphere system

Examine how the evolution of local rheology can modulate the extent of the 
seismogenic zone and long-term slip behavior.

 Motivating Questions 
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We assume that the elastic and inelastic 
strains add up

With stress/strain relationship

Conservation of momentum leads to 
the equivalent body force

The displacement field is obtained 
using the Green’s functions

Represent a unified expression for quasi-static 
deformation throughout the earthquake cycle

The solution can be approximated by a finite 
series:

Where the domain is a finite cuboid volume.

The kernels

We seek to solve complex friction, viscoelastic, thermoelastic, 
or poroelastic problems analytically in closed form.

Quasi-static Solutions for Distributed Deformation 
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A suite of solutions for the 
displacements, strains 
and stresses due to 
distributed inelastic 
deformation of finite 
shear zones in a half-space 
for cuboid sources.

Any distribution of 
inelastic strain can be 
associated with surface 
displacements, allowing 
linear kinematic 
inversion of deformation 
data.

 Kinematics of Distributed Deformation 

Barbot, S., Moore, J., and V. Lambert (2017). Displacement and Stress Associated with Distributed Anelastic 
Deformation in a Half-Space. Bull. of the Seism. Soc. of America, 107, 2, 821-855. 
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Barbot, Moore & Lambert (2017)



Which are dependent on pressure, temperature, and hydration conditions.

Viscoelastic deformation in the mantle asthenosphere and continental lower-
crust is accommodated by diffusion and dislocation creep mechanisms,

Grain-size is a controlling factor in the dominant deformation mechanism

Dislocation creep : movement of dislocations through crystal lattice (highly stress 
dependent)

Diffusion creep: diffusion of vacancies along grain boundaries (grain-size dependent)
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 Viscoelastic Deformation 
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pressure hardening

thermal weakening

Depth-dependent steady-state rheology is defined by a competition of thermal activation 
and pressure inhibition.
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We build unified models of earthquake cycles coupling the evolution of fault slip 
and distributed strain using the integral method.

Ø  Account for stress 
interactions with 
Green’s functions for 
slip along fault 
patches and 
distributed strain in 
finite volumes 

Ø  Using the analytic 
solutions for stress 
interactions, the 
integral method is 
several orders of 
magnitude faster than 
finite elements. 

Ø  Can now quickly and easily couple multiple physical processes in earthquake simulations.
	
  

 Coupling Fault Slip and Off-fault Deformation 
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Velocity-weakening parameters Velocity-strengthening parameters
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Model fault slip evolution using Dieterich-Ruina rate and state friction with the 
aging law

 Rate and State Friction 
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Lambert & Barbot (2016), GRL
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Perform quasi-dynamic modeling incorporating the interactions of fault slip and 
viscoelastic deformation using the integral method

Fault slip:
Rate-and-state
friction

Viscoelastic flow:
Power law 
dislocation creep

Earthquake Cycles in the Lithosphere-Asthenosphere System 
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 2D Antiplane Model Schematic 

Fault Slip:
Rate-and-state friction

Depth-dependent frictional properties
Radiation damping 

Loaded with driving plate rate

Viscoelastic Deformation:
Power-law dislocation creep

Depth-dependent thermal and pressure profiles
Loaded with reference strain rate

Stress transfer using Green’s functions
 for fault slip and strain within finite volumes 
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Periods of strain acceleration and deficit associated with earthquakes and slow-slip events
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Lambert & Barbot 
( 2016)

Use adaptive time steps to optimize calculations over a wide temporal range from 
milliiseconds to years.  
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 Spatial Distribution of Deformation 



20	
  

 Evolution of Fault Zone Rheology 

temperature

partial melthydration

grain size

So far we have considered spatial variations in viscosity
Ø  Want to consider temporal variability of rheological properties

Balancing of creep mechanisms 
controlled by grain-size evolution,

Grain growth, healing

Grain size reduction

Barbot et al. (in prep.)
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 Evolution of Fault Zone Rheology 

partial melthydration

grain size

So far we have considered spatial variations in viscosity
Ø  Want to consider temporal variability of rheological properties

Balancing of creep mechanisms 
controlled by grain-size evolution,

Grain growth, healing

Grain size reduction

Barbot et al. (in prep.)

temperature
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How deep can earthquakes rupture?

What controls variability in rupture depth?

Can they penetrate into deeper, more stable areas?

Competition between thermal strengthening and weakening mechanisms
²  Fault slip is,

Ø  Enhanced by coseismic thermal weakening mechanisms
Ø  Mitigated by off-fault thermally-activated viscous strain

How would this affect the occurrence of future events?

²  Explore the how the local rheology can be influenced by deep slip and 
potentially modulate subsequent loading

 The Role of Thermally-Activated Deformation 
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Laboratory experiments show a dramatic reduction in the coefficient of friction at high slip rates (> 0.1 m/s).

Ø  Flash heating – large frictional heating induced at seismic speeds on very localized contacts

Ø  Thermal pressurization – rapid decrease in effective confining pressure (thermal expansion of pore fluids)

Ø  Highly localized viscous strain - dramatic viscosity reduction 

²  The efficiency of thermal weakening mechanisms is highly dependent on fault zone structure and properties

 Enhanced Dynamic Weakening 
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Ø  Evolving rheology – temperature and stress as 
state variables

Ø  Temperature is increased by shear heating and 
moderated by thermal diffusion.

Shear heatingThermal diffusion

Ø  The viscosity of the off-fault material 
responds to heat production from 
deformation
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 Competition between Styles of Deformation 
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 Model Schematic 

Fault Slip:
Rate-and-state friction

Depth-dependent frictional properties
Enhanced dynamic weakening
Loaded with driving plate rate

Viscoelastic Deformation:
Thermally-activated Power-law dislocation creep
Depth-dependent thermal and pressure profiles

Loaded with reference strain rate

Stress transfer using Green’s functions
 for fault slip and strain within finite 

volumes 

Thermal Evolution:
Shear heating
Diffusion throughout bulk
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Evolution of temperature within the bulk over varying timescales

 Thermal Evolution within the Bulk 
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 Modeling Outlook 
Framework for combining multiple styles of deformation in quasi-dynamic 
earthquake cycles of the lithosphere-asthenosphere system.

Ø  Can incorporate:
•  Nonlinear rheologies
•  New physical processes (e.g. poroelasticity, thermoelasticity) 
•  More variables of state   (temperature, grain size, water content, etc.)

Ø  Very efficient modeling of quasi-static deformation

Limited in consideration of inertial effects
Ø  Looking to couple with fully dynamic rupture sequences
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Considerations for long-term fault behavior
What conditions would be necessary to propagate ruptures to various depths?

Ø  Efficient enhanced dynamic weakening mechanisms

How might the evolution of fault zone rheology alter the loading rate and strength of 
faults over various time-scales?

Ø  Viscous flow enhances far-field stress transfer 

How might this affect the potential size and recurrence of earthquakes?

How would this play into regional studies of fault networks?

 Concluding Thoughts 

Code available at:                             https://bitbucket.org/sbarbot/unicycle

Lambert, V., and S. Barbot (2016), Contribution of viscoelastic flow in earthquake cycles within the 
lithosphere-asthenosphere system, Geophys. Res. Lett., 43, 10,142–10,154, doi:10.1002/2016GL070345.


