Impacts of Elastoplasticity and Compliant Zones on the Mechanics of Near-Surface Faulting

science for a changing world

USGS Earthquake Science Center, Menlo Park CA

Ben Brooks, Rufus Catchings, Mark Goldman, Dave Lockner, Joanne Chan, Coyn Criley, Sarah Minson, Todd Ericksen, Craig Glennie

Bolinas, CA 1906 G.K. Gilbert

Josie Nevitt

Impacts of Elastoplasticity and Compliant Zones on the Mechanics of Near-Surface Faulting

Josie Nevitt USGS Earthquake Science Center, Menlo Park CA

Ben Brooks, Rufus Catchings, Mark Goldman, Dave Lockner, Joanne Chan, Coyn Criley, Sarah Minson, Todd Ericksen, Craig Glennie

Bolinas, CA 1906 G.K. Gilbert

Fault drag [Lawson et al., 1908]

Surface displacement in alluvium [Reid, 1910]

≥USGS

science for a changing world

1. What is the magnitude and distribution of shallow fault slip?

Hazard Implication:

Long-term slip rates derived from surface measurements

Landers (1992) Hector Mine (1999) 40 InSAR GPS 30 20 N distance, km 01 10 v 20 30 40 1 m * GPS 50 ¹ 40 > InSAR * 20 40 20 W E distance, km 100 10 0.01 0.1 -60 -40 -80 -20 Displacement (cm) Distance (km) Fialko & Simons [2001] Fialko [2004]

"Shallow Slip Deficit (SSD)"

Modified from Fialko et al. [2005]

Near-field data critical to resolving shallow slip

Landers

Near-field data critical to resolving shallow slip

2. How sensitive is shallow deformation to constitutive properties?

Hazard Implications:

- Inversion capabilities
- Deformation of shallow infrastructure
 - (e.g., gas, water pipelines)

 G_0

 $G/G_0 \sim 0.5$

Homogeneous Elastic

(e.g., Okada, 1985)

Compliant Zone type example: Punchbowl Fault

[Chester & Logan, 1986; Chester et al., 2005]

Compliant Zones: Geodetic and seismological evidence

Surface deformation confined to compliant zones during remote loading *What happens when the fault within the CZ slips?*

Plastic Deformation: Geodetic and field evidence

InSAR shows distributed deformation across San Andreas near Durmid Hill

No evidence of km-scale compliant zone

Plastic Deformation: Geodetic and field evidence

Photo and sample courtesy of Roger Bilham

2. How sensitive is shallow deformation to constitutive properties?

Hazard Implications:

- Inversion capabilities
- Deformation of shallow infrastructure
 - (e.g., gas, water pipelines)

 G_0

 $G/G_0 \sim 0.5$

Homogeneous Elastic

(e.g., Okada, 1985)

3. Can surface deformation reveal rupture dynamics?

Bulletin of the Seismological Society of America, Vol. 98, No. 4, pp. 1609-1632, August 2008, doi: 10.1785/0120070111

Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis

and the Process of Earthquake Rupture

by Steven G. Wesnousky

Table 1 Geological Observations													
Date	1.000.00	122112411	-	Length	S' (Average Net Slip)	Sna South	Depth	Rigidity µ		-			-
(mm/dd/yyyy)	Location	Number	Туре	(km)*	(m)	Max Slip (m)	(km)	(10 ¹¹ dynecm ²)	M ¹ ₀ (10 ⁻¹⁵ dyne cm)	P ₀ ^o (10 ^o cm ³)	M ^U _W	Reference'	Notes'
01/09/1857	San Andreas, CA	1	SSR	360	4.7	9.1 (12)	15	3	76	25.4	7.9	2 2 49	a
10/28/1801	Soliofa, MA	2	N/00	20	2.2	4.1	15	3	8.0	2.7	7.2	2, 3, 40	D
09/21/1991	Rilow Japan	3	D /45	27	25 (2.5)	62 (99)	15	30	8.2	3.6	7.3	5	d
10/02/1915	Pleasant Valley,	5	N/45	61	1.8 (2.6)	5.8 (8.2)	15	3.1	10.3	3.4	7.3	6	e
11/02/1930	Kita-Izu, Japan	6	SSL	35	1.1	3.5	12	3.3	1.6	0.48	6.7	7	f
12/25/1939	Erzincan, Turkey	7	SSR	300	4.2	7.4	13	3.2	52.5	16.4	7.7	8	8
05/19/1940	Imperial, CA	8	SSR	60	1.6	3.3	13	2.5	3.0	1.2	6.9	9	h
12/20/1942	Erbaa-Niksar, Turkey	9	SSR	28	1.66	1.9	13	3.2	1.8	0.6	6.8	8	I
11/26/1943	Tosya, Turkey	10	SSR	275	2.5	4.4	13	3.2	28.7	9.0	7.6	8	j
09/10/1943	Tottori, Japan	11	SSL	10.5	0.6	1.5	15	3.3	0.3	0.09	6.3	10	k
02/01/1944	Gerede-Bolu, Turkey	F	21	155	2.1		13	3.2	n	7	7.35	8	1
01/31/1945	Mikawa, Jap.		-R/)	4.0				3.	0. 1 7	.08	6.2	11	m
12/16/1954	Fairview Peak,		Na- (60	62		2	15	3.0	3	11	7.0	13	n
12/16/1954	Dixie Valley, NV	16	N/60	47	0.8 (0.9)	3.1 (3.5)	12	3.0	1.76	0.6	6.8	13	t
08/18/1959	Hebgen Lake, MT	14	N/50	25	2.5	5.4	15	3.0	3.7	1.25	7.0	12	S
07/22/1967	Mudumu Turkey	17	SSR	60	1.9	2.0	12	2,4	1.0	0,65	6.7	8	u
04/08/1968	Borreg Mit CA	AY			.13				. J. (- and	14	V
02/09/1971	San Fe iand		4		.95					30		59	ap
06/02/1979	Cadoux, Australia	20	R/35	10	0.6	1.2	6	3.2	0.20	0.06	0.1	49	Х
10/15/1979	Imperial Valley, CA	21	SSR	36	0.28-0.41	0.6-0.78	13	2.5	0.33-0.48	0.13-0.19	6.3– 6.4	15, 16	W
10/10/1980	El Asnam, Albert		R/57	27.3		6.5	12		5	0.5	6.7	60	aq
07/29/1981	Sirch, Ira		- Ve	4			15		1 43	J.1	5.4	50	aj
10/28/1983	Borah Pea /II		14	4	94 (1)	2. (4		- 2	9	685	6.9	17	У
03/03/1986	Marryat, Australia	25	R/35	13	0.24 (sec) (0.42)	0.70 (sec) (1.2)	3	3.2	0.09 (sec)	0.03 (sec) 5	5.9 (sec)	46	z
					0.26u (0.46)	0.8u (1.4)			0.10u	0.03u	5.9u		
03/02/1987	Edgecumbe, NZ	27	N/60	15.5	0.6 (0.7)	2.6 (3.0)	10	2.6	0.33	0.13	6.3	19	ao
11/23/1987	Super, Hills, CA	26	SSR	25	0.3-0.6	0.5-1.1	12	2.5	0.22-0.47	.0919	6.2-	18	aa
											6.4		
01/22/1988	Tennant Crk, Australia	28	R/45	30	0.7 (1.0)	1.8 (2.5)	8	3.3	1.1	0.34	6.6	43	ab
07/16/1990	Luzon, Philippines	29	SSL	112	3.5	6.2	20	3.5	27.4	7.84	7.6	20, 21	am
06/28/1992	Landers, CA	30	SSR	77	2.3	6.7	15	3.0	8.1	2.7	7.2	22	ac
03/14/1998	Fandoqa, Iran	31	SSN/54	25	1.1	3.1	10	3.3	1.2	0.36	6.6	50	ag
08/17/1999	Izmit, Turkey	34	SSR	107 (145)	1.1	5.1	13	3.2	4.9	1.5	7.1	47	ae
09/21/1999	Chi-Chi, Taiwan	32	R/70	72	3.5 (4.0)	12.7 (16.4)	20	3.0	18.4	6.1	7.4	23	ad
10/16/1999	Hector Mine, CA	33	SSR	44	1.56	5.2	12	3.0	2.5	0.82	6.9	57	an
11/12/1999	Duzce, Turkey	35	SSR	40	2.1	5.0	13	3.2	3.5	1.1	7.0	24	af
11/14/2001	Kunlun, China	36	SSL	421	3.3	8.7	15	3.0	62.5	20.8	7.8	53	am
11/14/2001 (spot)	Kunlun, China	36a	SSL	428	2.4	8.3	15	3.0	46.8	15.6.	7.8	61	al
11/03/2002	Denali, AK	37	SSR	302	3.6	8.9	15	3.2	51.6	16.1	7.7	52	ak

Type of earthquake mechanism and dip. Kight- and left-lateral strike slip are SSR and SSL, respectively. Reverse and normal events are K and N, respectively. Kight-lateral normal oblique motion is NSSR. See column labeled Notes for an explanation of the calculation for each event. When two values are given, the value in rounded brackets is the calculated net slip and the other is for the type of slip provided in the original slip distribution.

The digitized distance along fault rupture trace

See Table 3 for the key to the references.

See (2) the electronic edition of BSSA for notes bearing on the basis for assigning column values and location of the epicenter when plotted.

Hayward Fault simulations suggest 40% afterslip within 24 hrs

Hazard Implication:

Empirical relationships based on this data (e.g., GMPEs) may be flawed

2014 M 6.0 South Napa Earthquake

Deflected vine rows record deformation

En echelon secondary fractures observed along length of rupture

En echelon secondary fractures observed along length of rupture

Trenches confirm buried fault tip and distributed deformation

South Avenue Trench

Brooks et al. [accepted]

Courtesy of Tim Dawson

Trenches confirm buried fault tip and distributed deformation

Courtesy of Tim Dawson

Near-field measurements with Mobile Laser Scanning (MLS)

- Covered 80% rupture
- 3 epochs of data: ~1 wk, ~1 mo, ~1 yr
- >5 billion laser reflection points per epoch
- Each point referenced in 3 dimensions
- Accuracy within a few centimeters

Aria Project

Near-field deformation at post- and co-seismic sites

Post-seismic Site

Co-seismic Site

Dynamic slip didn't cause permanent deformation distinguishable from static slip

(i) Neither dynamic nor static stress state met yield criterion, or

(ii) Rupture slowed down such that dynamic terms were negligible

Active-source seismic imaging of shallow subsurface

Methodology

- 120 m long survey
- Source/receiver spaced every 1 m
- Active source using hammer and steel plate
- Recorded both P- and S-waves
- Guided waves (GW)

For detailed overview of methodology: Catchings et al., BSSA, 2014

Evidence for Subsidiary Faults

Why did fault slip focus onto one strand?

Evidence for compliant zone from refraction tomography

- High fracture density → Reduced s-wave velocity
- Fluid saturation → Increased p-wave velocity

Variation in subsurface structure and mechanical properties

distance (m) -0.2 -0.4 n=83 0.02 0.0 $\epsilon_{\rm xy}^{\rm e}$ -0.01 -20 20 40 -40 0 distance (m) -10 G/G_{max} depth (m) 0.3 0 0.4 0.5 10 0 20 -10 Vp/Vs depth (m) 0 3 10 -7-20⊾ -60 0 60 -40 -20 20 40 0 distance (m)

Post-seismic Site

Co-seismic Site

PARAMETERS DATA near-field data needed to resolve $\mathbf{Gm} = \mathbf{d}$ depth to fault's shallow slip upper edge **ELASTIC MODEL** depth to Depth to upper fault edge slip 10 cm upper edge 5 m 25 m u_v/slip $u_{y} = (s/\pi)^{*}[tan^{-1}(y/W) - tan^{-1}(y/W)]$ surface displacement -1 -80 -60 -40 -20 0 20 40 60 80 Distance (m)

Formal inversion for shallow fault slip using MLS data

Inferred slip (0.5-1.25 m) at shallow depths (3-25 m)

Commercial multi-physics modeling package

- Abaqus/Standard Implicit, quasi-static deformation
- Abaqus/Explicit Explicit, dynamic deformation
- Abaqus/CFD Computational fluid dynamics
- Abaqus/CAE GUI to build models, submit analyses, monitor jobs, evaluate results
- Abaqus/Viewer Post-processing and visualization

Many built-in constitutive behaviors

- o *Elastic*: Isotropic/Anisotropic, Hyperelastic, Poroelastic...
- o Elastoplastic: Von Mises, Mohr-Coulomb, Drucker-Prager, Cam-Clay, Damage ...
- Creep and Viscoelastic: Linear, Power-law, Exponential...
- o *Elastoviscoplastic*: Coupled, Two-layer...

Targeted toward engineers

 \circ Increasingly used in earth sciences, but documentation still lacking.

Complete Abaqus Environment (CAE)

Modeling faults in Abaqus

"Crack Seam" tool

Works well for remote loads or applied tractions

Cannot prescribe displacement

High aspect-ratio triangular cuts

Can be used with either displacement or traction BCs

Meshing can be very difficult, computationally expensive

2. How sensitive is shallow deformation to constitutive properties?

z = -d

Compliant Zone Elastic

(e.g., Barbot et al., 2008)

c = 0 MPa

Drucker-Prager Elastoplasticity

Cohesion (C): Non-frictional part of shear-resistance.

Low C = Gravel (0 kPa)High C = Clay (100 kPa)

Angle of Internal Friction (φ): Imparts dependence on normal stress Low φ = Compacted clay (15°) High φ = Densely packed, angular sand/gravel (45°)

Base Case estimates for Napa: $C = 50 \text{ kPa}, \varphi = 25^{\circ}, \mu_{fault} = 0.4$

E = 100 MPa, $\nu = 0.3$, $\rho = 2000 \text{ kg/m}^3$

C –COHESION φ –ANGLE OF INTERNAL FRICTION

Model geometry, mesh, and boundary conditions

<u>Model domain:</u> 1000 m x 1000 m x 800 m

<u>Fault dimensions:</u> 300 m x 400 m, buried 5 m

Compliant zone: +/- 25 m

<u>Mesh:</u> 160,000 linear tetrahedrals Size range: 0.5-50 m Loading Initial: Geostatic stress Step 1: Gravitational load Step 2: Uniform slip = 1 m (Prescribed slip)

Effect of constitutive properties

Compliant Zone Elastic

Homogeneous Elastoplastic

Compliant Zone Elastoplastic

Comparison of model results with MLS data


```
Ave. Residual = 0.6 cm
Not detectable by MLS
```

Elastoplastic model with remote loading (spontaneous rupture)

- Elastoplastic surface layer overlying elastic basement
- Remote displacement boundary conditions (transpression) with gravity
- Fault slip governed by Coulomb criterion: $\sigma_s = \mu \sigma_n$

Effect of cohesion on fault slip and surface deformation

- Lower cohesion produces greater regions of off-fault plasticity, relaxing stress on the fault
- Slip and shear localization at the surface increase with increasing cohesion

Effect of Cohesion: Comparison to field examples

Litchfield et al. [2014]

Conclusions

• What is the magnitude and distribution of shallow fault slip?

- Along S. Napa rupture, significant slip (0.5-1.25 m) at shallow depths (3-25 m)
- o Greater than surface measurements, but still less than than finite fault models suggest.

• How sensitive is shallow deformation to constitutive properties?

- For the model same inputs (slip and burial depth), surface displacements are much more sensitive to variation in plastic parameters than to compliant zone parameters.
- Surface displacement measurements and subsurface seismic imaging show that deformation is focused to a much narrower region than the compliant zone width.

Can surface deformation reveal rupture dynamics?

- For Napa, predominantly co- and post-seismic sites show very similar deformation patterns.
- Rupture may have slowed down such that dynamic stress \approx static stress field.

Questions raised:

- Why would a rupture arrest within meters of Earth's surface?
- \circ $\,$ Why are some fault strands activated over others?
- What mechanisms contribute to distributed shear deformation?

Collect core samples for microstructural analysis and mechanical testing
 Post-seismic Site
 Coseismic Site

AGU FALL MEETING New Orleans 1 11–15 December 2017

G013: Near-Surface Structure and the Mechanics of Shallow Fault Slip

Co-Organized with: Geodesy, Seismology, and Tectonophysics

WED : Abstract Submissions Deadline 2

AUG