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A tfault/earthquake cycle model wish list:

topography

complex fault systems

material property variations




Better tools can speed up science

FEM requires a volumetric mesh

Incredibly difficult for realistic
fault system geometries!

Plesch et al. 2007

"80% of overall analysis time is devoted to mesh generation”
- Hughes et al. 2005



Current boundary element methods are also limited

Simple models

i,V

Small models (<50k elements)

Constant slip Okada dislocations
produce unphysical singular ’*
stresses




How are dislocation solutions derived?
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Integrate by hand:
4= / G*5 dF -
F
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-M limitations are due to

analytical integration...
and are avoidable!




Numerically integrate!

i= | G5 dF -
F

|

Any Green’s function
— topography, material contrasts, gravity
(even viscoelasticity, Stokes flow)

Any basis for the slip
— |inear to avoid stress singularities



Two types of Green's function interaction integrals
Near-field
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Far-field: Dense BEM matrices are slow!
— Fast multipole method

J.i. ; i
o Li [l e H i 1
¥ 2 E (G 1 I
Wil &
" i
H i
| i ” ‘\
= i
ail TN |1
i, H ||| 1
i
| ]
I
il
B m Al

1l
UKt




The near-field challenge:
— any Green's function
— any basis
— high accuracy
— black box to the user

Very difficult while remaining fast unless...



The near-field challenge:
— any Green’s function
— any basis
— high accuracy
— black box to the user

Very difficult while remaining fast unless...

Precompute




Reduce the set of possible near-field integrals

1- Translate to origin

2 - Rotate to x-axis

3 - Rotate around x-axis

4 - Scale

Default: 9 geometric parameters and 2 material properties
Reduced: 2 geometric parameters and T material property




Avoid the singularity by taking a numerical limit...

ﬁ

and brute-force it with adaptive quadrature!




Tectosaur:
An efficient and flexible BEM for earthquake science

Near-field:
— lookup tables built by brute-force
— run-time lookup is very fast
— highly general and black-box

Far-field
— fast multipole method enables millions of elements

Parallel and GPU accelerated



A quick check: Can we replicate Okada?

(with full space Green's functions!)
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How does topography affect slip inversion?
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Differences are concentrated near steep areas
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3.5 m uniform

Invert strike-slip motion
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lgnoring topography — shallow slip-deficit
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lgnoring topography — spurious dip-slip
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Shallow slip-deficit, deep slip-excess
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How to explain shallow slip-deficits?

Inelastic near-surface deformation?

Interseismic/postseismic near-surface creep?

An artefact of ignoring free-surface effects of topography



A real-world example: Wenchuan
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A difficult choice!

Do we:

use a free-surface that isn’t at sea-level?

change the fault geometry so it lies below sea-level?



Forward mode|
displacements
(1T m of dip-slip)
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Differences are
concentrated in the
steep hanging wall
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Invert dip-slip motion

G

flat’  Miat tOpOmtOpO



Topography controls the entire slip distribution
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Inversion amplifies forward model errors
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Tectosaur: a new tool for high-fidelity fault modeling

Now:
topography millions of elements
earth curvature no volumetric meshing
material contrasts rapid model iteration

lgnoring topography creates inferred shallow slip-deficits

Small forward model effects can become huge inversion effects

Boundary element methods are not as limited as once thought

Future BEM:
mesh-free nonlinearity? dynamic rupture/waves? YES










Extra slides



Okada, other dimensions
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AlSO sphere compression
works (whoa, we can do
traction and displacement

BCs?!)



FMM Log10 error
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Richardson quadrature error for Laplace
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Old slides



Dislocation-based boundary element
methods make these problems very hard

Rectangular dislocations
(Okada, 1994) and triangular
dislocations (Meade, 2007)
are limited to constant slip
per element.

This leads to:
e Discontinuous
displacement between
elements

e Stress singularities at the
edges of elements
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Goal: earthquake cycle modeling and
simulation in large geometrically complex
fault systems

Complex geometries
Rapid model iteration
(no volumetric meshing!)

Gravitational stresses

Surface topography

Sharp material contrasts



Next Generation Boundary Elements for Earthquake Science

T. Ben Thompson and Brendan J. Meade
Department of Earth & Planetary Sciences
Harvard University




Initially: 9 geometric parameters + 2 material (shear modulus,
poisson ratio)

(g.hi) After reduction: 2 geometric parameters + poisson ratio = 3
total parameters
(def) (9/d,h/d,0)
(ab.c) (1,0,0)
translate to origin scale
(9.h,0)
rotate to rotate around
X-axis X-axis
—_— —_—
(d,0,0)

(0,0,0)




Extrapolation converts one singular integral
into several nearly singular integrals

Problem: Computing nearly singular integrals is expensive
because these integrals are still very peaked (and 4D')

Solution: An interpolation table for these integrals can be
computed offline.



General Boundary Element Methods are |deal

Instead of analytical dislocation theory, use
numerically computed surface integrals
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Linear basis functions allow continuous displacement
distributions — No stress singularities!

Gravity, topography, and material contrasts can all be treated
accurately.



Current boundary element methods are also limited
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Current boundary element methods are also limited
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Current boundary element methods are also limited
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Current boundary element methods are also limited

What we usually do: What we want to do:

- Constant slip Okada dislocations - Non-singular stresses

produce unphysical singular stresses - Large and geologically accurate
- Geometrically simple models with models

<50,000 elements
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Far-field integrals are easy to compute,
but numerous

— Dense BEM matrices require O(N*2) entries
— The Kernel Independent Fast Multipole Method can

approximate BEM matrices with O(N) entries




Richardson Extrapolation is Accurate but Slow

A kernel independent approach for the near
field integrals: Richardson extrapolation

I(x+h)=I(z)+Cih +O(h?)
I(x+h/2)=1(x)+ C1h/2 +0(h*)
I(x+h)=2I(x+h/2) = I(z) +0O(h*)



General outlining:
- BEM Methods -- | copied the AGU2016 slides, currently they're just images, So
they're fuzzy, but I'll convert them later.

| want to think about the right way to modify these for the audience, since |
think it's a bit different from the AGU audience. Also, the talk is less strictly about
the methods and much more broad.

| think the BEM section should be feel like two parts:

- Why?

- How?
- Should | show a quick confirmation that things work? Okada? Sphere to point out

that we're not stuck in fault-only-world?
- |dealized problems showing what can happen with topography

- Wenchuan problem



Where to next?

- Use real models of the
faults in Fialko 2005 (Bam,
Hector Mine, Landers,
lzmit)

- Spherical free surface?



