The 2018 Mw 7.5 Palu Earthquake and the Slowness-Enhanced Back-projection

UNIVERSITÉ

COTE D'AZUR

Han Bao (UCLA)

J.P. Ampuero (IRD/UCA, Géoazur)

L. Meng, G. Peltzer. (UCLA)

E. Fielding, C. Liang, C. Milliner (JPL, Caltech)

Overview

Part 1: Palu Earthquake

- Static Observations
 - Radar and image satellites
- Dynamic Observations
 - Teleseismic Back-projection
 - Surface Mach wave/Mach cone

• Implications

Part 2: SEBP

- Slowness-Enhanced Backprojection
 - Improvement of accuracy
 - Better source properties estimation
- Optimization and Application

Remote sensing observations of surface rupture

- Along-track displacement from ALOS-2
- Southward rupture length ~150 km
- Large slip (~6m) in Palu city

Some portions of the fault are quite straight, but there are also visible bends and kinks.

Remote sensing observations of surface rupture

Optical pixel tracking analysis of Sentinel 2 and Planet Labs images

Teleseismic observations of rupture speed 1. Back-projection rupture imaging

Southward rupture length ~150 km

A **supershear** earthquake: Rupture speed faster than S waves

Steady and fast rupture despite large fault bends

Local Vs = 3.6 km/s (Crust 1.0)

Slowness-enhanced Back-projection (SEBP)

Teleseismic observations of rupture speed 2. Surface wave Mach cone

Sonic boom generated by supersonic jet plane

Modified from Eric Dunham's website

Teleseismic observations of rupture speed 2. Surface wave Mach cone

Teleseismic observations of rupture speed 2. Surface wave Mach cone

Teleseismic observations of rupture speed

Rupture speed \approx 4.1 km/s

Fast speed from early on

Steady despite fault bends

Overview

- Static Observations
- Dynamic Observations
- Implications
 - Short transition distance
 - Unstable supershear speed
 - Steady supershear despite kinks

Early Supershear Ruptures

Daughter-Crack

- Dynamic Stress Transfer

Elastic wave transmit stress with a speed faster than rupture propagation

- Exceeding peak strength of the fault
- Initiating slip with a Daughter-Crack

Depth (km)

Dunham & Archuleta (2004)

Daughter-Crack

Dunham, 2007

Interpretations

Supershear Transition length as a function of seismic S ratio

Transition distance can be caused by:

- high initial shear stress level
- short critical slip-weakening distance ٠

Possibly high initial stress concentrations due to the M6.1 foreshock or to fault roughness.

Higher initial stress

Supershear earthquakes

Figure modified from Huang et al., 2016

Damaged Fault Zone

- Easily **30% drop** of the seismic wave speed.
- Shorten the transition distance

Punchbowl fault, CA (Chester and Chester, 1998)

Y. Huang and J.P. Ampuero (2012)

Supershear earthquakes

1999 Mw 7.6 Izimit

"In all the documented observations of supershear ruptures, a striking common feature is the simple geometry of the fault. Its surface expression is always remarkably straight and continuous."

(Bouchon et al, 2010)

Supershear rupture of the 2018 Mw 7.5 Palu earthquake Summary

- Observations:
 - A supershear earthquake from early on
 - Steady and fast despite major fault bends
 - Supershear but slower than expected
- Open questions:
 - What is the condition of the local damage zone?
 - Did supershear contribute to a cascade of secondary effects?

(shaking -> submarine landslide -> tsunami)

Extra Slides for question: Palu

Extra Slides for question: Back-projection

Arrays we considered:

Australia New Zealand Turkey Japan Alaska

The Mw 7.5 Palu earthquake, 28/09/18

Tsunami

Landslides/liquefaction

AFP

Reuters

Socquet et al. (Nat Geo, 2019)

Ulrich et al. (preprint on EarthArXiv, 2019)

Overview

Part 1: Palu Earthquake

- Static Observations
 - Radar and image satellites
- Dynamic Observations
 - Teleseismic Back-projection
 - Surface Mach wave/Mach cone

• Implications

Part 2: SEBP

- Slowness-Enhanced Backprojection
 - Improvement of accuracy
 - Better source properties estimation
- Case Applications

motivation

A better understanding of earthquake sources

challenge:

Observation's uncertainty

- Rupture properties:
 - Length?
 - Direction?
 - Speed?

challenge:

Observations' fall-behind

Earthquake Cycle Simulation of 2012 Mw 8.6 Indian-Ocean earthquake

(Noda et al., 2014)

Interpretation of earthquake physics

• How Deep can Rupture Go?

Additional dynamic weakening at high slip-rate promotes deeper rupture penetration

(Jiang and Lapusta, 2016)

Interpretation of earthquake physics

Also the case for subduction zone?

Interpretation of earthquake physics

Back-projection (BP)

Rupture propagation

Back-projection (BP)

Meng and Bao (In review)

Meng and Bao (in prep. 2019)

2017 Mw 8.2 Tehuantepec

RMS Error : 21 km -> 8 km

Meng and Bao (2019)

2010 Mw 9.1 Tohoku

Bao and Meng (in prep. 2019)

Overview

Part 1: Palu Earthquake

- Static Observations
 - Radar and image satellites
- Dynamic Observations
 - Teleseismic Back-projection
 - Surface Mach wave/Mach cone

• Implications

Part 2: SEBP

- Slowness-Enhanced Backprojection
 - Improvement of accuracy
 - Better source properties estimation
- Case Applications

Impact on interpretation of earthquake physics

More accurate estimate of *Rupture Properties*:

- Length
- Direction

• Speed

How Deep can Rupture Go?

Additional dynamic weakening at high slip-rate promotes deeper rupture penetration

2011 Mw 9.0 Tohoku Earthquake

Bao and Meng (in prep. 2019)

2015 Mw 8.3 Illapel Earthquake

Summary

- SEBP effectively reduces the spatial uncertainty of back-projection
- SEBP enables us to resolve earthquake with better accuracy
- Network Validation (technical)

Bao and Meng (in prep. 2019)

Extra Slides for question: BP

Tohoku Earthquake Aftershocks

BP locations are biased towards to the west (deeper along-dip)

> BP locations are biased towards to the NW

We found a way to qualify aftershocks for calibration

Confidence intervals of locations of high-frequency radiation

