User Tools

Site Tools


software:specfem3d:start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
software:specfem3d:start [2014/01/02 22:45]
emheien
software:specfem3d:start [2014/02/06 17:44]
emheien
Line 2: Line 2:
  
 [[http://​geodynamics.org/​cig/​software/​specfem3d|SPECFEM3D Software Page]] [[http://​geodynamics.org/​cig/​software/​specfem3d|SPECFEM3D Software Page]]
 +
 +===== Development =====
 +
 +If you want to contribute to the source code, please refer to [[https://​github.com/​geodynamics/​specfem3d/​wiki/​Git-tips-for-developers|https://​github.com/​geodynamics/​specfem3d/​wiki/​Git-tips-for-developers]] for details.
  
 ===== Tutorials ===== ===== Tutorials =====
 +
 +Step-by-step tutorials how to run SPECFEM3D simulations
  
 ==== Tutorial 1: Homogeneous halfspace ==== ==== Tutorial 1: Homogeneous halfspace ====
Line 211: Line 217:
 {{:​software:​specfem3d:​tutorial:​homogeneous_seismograms.jpg?​direct&​500|}} {{:​software:​specfem3d:​tutorial:​homogeneous_seismograms.jpg?​direct&​500|}}
  
 +==== Tutorial 2: Waterlayered halfspace ====
 +
 +The following instructions assume that you have installed [[http://​geodynamics.org/​cig/​software/​specfem3d/​|SPECFEM3D]] and familiarized yourself with how you will run the package based on your computer configuration,​ as detailed in the [[http://​geodynamics.org/​cig/​software/​specfem3d/​|SPECFEM3D User manual]] (Chapter 2 provides installation help). Additionally,​ we will make use of an external, hexahedral mesher [[http://​cubit.sandia.gov/​|CUBIT]]. Please make sure you have these packages installed on your system.
 +
 +The example is distributed with the package under the examples/ directory. However, you might need to edit these example scripts slightly to launch them on your system.
 +
 +=== Waterlayered halfspace ===
 +
 +This is a step-by-step tutorial how to create a mesh for a layered halfspace with a water layer on top, export it into a [[http://​geodynamics.org/​cig/​software/​specfem3d/​|SPECFEM3D]] file format and run the mesh partitioning and database generation.
 +
 +=== Meshing ===
 +
 +In the following, we will run a python script within [[http://​cubit.sandia.gov/​|CUBIT]] to create the needed mesh files for the partitioner.
 +
 +1. change your working directory to the example folder:
 +  []$ cd SPECFEM3D/​examples/​waterlayered_halfspace
 +
 +2. start the graphical user interface (GUI) of [[http://​cubit.sandia.gov/​|CUBIT]]:  ​
 +  [waterlayered_halfspace]$ claro
 +
 +{{:​software:​specfem3d:​tutorial:​cubit12.jpg?​direct&​640|}}
 +  ​
 +3. run the python file:
 +  use the (Play Journal File) button and open the file "​waterlayer_mesh_boundary_fig8.py"​
 +
 +4. in case the script executed successfully,​ it should create you three volumes with a refined mesh for the top layer, a triplication layer and a coarser mesh layer at the bottom:
 +
 +{{:​software:​specfem3d:​tutorial:​cubit_waterlayered.jpg?​direct&​640|}}
 +
 +check that the script created a new folder "​MESH/"​ containing the files:
 +  [waterlayered_halfspace]$ ls -1 MESH/
 +  absorbing_surface_file_bottom
 +  absorbing_surface_file_xmax
 +  absorbing_surface_file_xmin
 +  absorbing_surface_file_ymax
 +  absorbing_surface_file_ymin
 +  free_surface_file
 +  materials_file
 +  mesh_file
 +  nodes_coords_file
 +  nummaterial_velocity_file
 +
 +you can also check if the export was successful by examining the output in the Command line window of CUBIT. The sensitive part should look like
 +
 +{{:​software:​specfem3d:​tutorial:​cubit_commandline_waterlayered.jpg?​direct&​400|}}
 +
 +5. optionally, you could modify the material properties of the model, either in CUBIT or in the newly created material file:
 +
 +* changing the block properties in CUBIT
 +
 +{{:​software:​specfem3d:​tutorial:​cubit_properties_waterlayered.jpg?​direct&​400|}}
 +
 +the following table applies for **acoustic** material properties:
 +
 +^ **Name** ^ block name must start with "​acoustic"​ for acoustic materials followed by a unique identifier ''​material_id''​ ^
 +| **Attribute 1**  | Material ID |
 +| **Attribute 2**  | P-wave speed |
 +| **Attribute 3**  | S-wave speed is ignored, set to zero |
 +| **Attribute 4**  | Density |
 +
 +the following table applies for **elastic** material properties:
 +
 +^ **Name** ^ block name must start with "​elastic"​ for elastic materials followed by a unique identifier ''​material_id''​ ^
 +| **Attribute 1**  | Material ID |
 +| **Attribute 2**  | P-wave speed |
 +| **Attribute 3**  | S-wave speed |
 +| **Attribute 4**  | Density |
 +| **Attribute 5**  | Quality factor |
 +| **Attribute 6**  | Anisotropy flag |
 +
 +Once you changed the properties, you will have to re-export the mesh. This can be done, using the script ''​run_cubit2specfem3d.py'':​
 +  use the (Play Journal File) button and open the file "​run_cubit2specfem3d.py"​
 +
 +This should refresh the files in directory "​MESH/"​.
 +
 +* directly modifing the file ''​nummaterial_velocity_file''​ in the ''​MESH/''​ directory:
 +  1   ​1 ​         1028.000000 ​         1480.000000 ​            ​0.000000 ​            ​0.000000 ​ 0
 +  2   ​2 ​         3200.000000 ​         7500.000000 ​         4300.000000 ​         9000.000000 ​ 0
 +  2   ​3 ​         3200.000000 ​         7500.000000 ​         4300.000000 ​         9000.000000 ​ 0
 +
 +this file defines the material properties. the format is:
 +
 +^ **Domain_id** ​                 ^ **Material_id** ^ **Density** ​        ^ **P-wave speed** ​ ^ **S-wave speed** ​     ^ **Quality factor** ​ ^ **Anisotropy_flag** ​           ^
 +| 1 = acoustic, | unique material | density ​            | wave speed in m/s | wave speed in m/s | Quality factor, | flag for anisotropy model, |
 +| 2 = elastic ​      | identifier ​     | in kg/​m<​sup>​3</​sup>​ |                   | (ignored for acoustic materials) | 0 = no attenuation ​ | 0 = no anisotropy ​             |
 +
 +----
 +
 +=== Setting up example folder for simulations ===
 +
 +We will set up the example folder for simulation runs: 
 +
 +* databases directory:
 +create a directory ''​in_out_files/​DATABASES_MPI/''​ into which you will put the mesh partitions:
 +  []$ cd SPECFEM3D/​examples/​waterlayered_halfspace
 +  [waterlayered_halfspace]$ mkdir -p in_out_files/​DATABASES_MPI
 +
 +* parameter files:
 +make sure you have the parameter files in a local directory ''​in_data_files/''​ for the example:
 +  [waterlayered_halfspace]$ ls -1 in_data_files/​
 +  Par_file
 +  CMTSOLUTION
 +  STATIONS
 +
 +these files should already be provided in the example folder.
 +
 +* executables: ​
 +compile the executables in the root directory:
 +  []$ cd SPECFEM3D/
 +  [SPECFEM3D]$ make
 +
 +in case the compilation was successful, it will create the executables ''​xdecompose_mesh_SCOTCH'',​ ''​xgenerate_databases''​ and ''​xspecfem3D''​ in the ''​bin/''​ directory
 +    ​
 +and create a local directory ''​bin/''​ to link the executables from the root directory:
 +  []$ cd SPECFEM3D/​examples/​waterlayered_halfspace
 +  [waterlayered_halfspace]$ mkdir -p bin    ​
 +  [waterlayered_halfspace]$ cd bin/
 +  [bin]$ ln -s ../​../​../​bin/​xdecompose_mesh_SCOTCH
 +  [bin]$ ln -s ../​../​../​bin/​xgenerate_databases
 +  [bin]$ ln -s ../​../​../​bin/​xspecfem3D
 +
 +All these steps and the following decomposition,​ database generation and solver run are put in a ''​process.sh''​ bash script file in the example folder. You can simply run the script:
 +  [waterlayered_halfspace]$ ./​process.sh
 +to do the setup and following steps for you. Please modify and adapt the script to your needs.
 +
 +----
 +
 +=== Mesh partitioning ===
 +
 +In this example, we will partition the mesh for 4 CPU cores.
 +  ​
 +run the mesh partitioner:​
 +  [waterlayered_halfspace]$ ./​bin/​xdecompose_mesh_SCOTCH 4 MESH/ in_out_files/​DATABASES_MPI/​
 +
 +check that this created the mesh partitions:
 +  [waterlayered_halfspace]$ ls -1 in_out_files/​DATABASES_MPI/​
 +  proc000000_Database
 +  proc000001_Database
 +  proc000002_Database
 +  proc000003_Database  ​
 +
 +{{:​software:​specfem3d:​tutorial:​scotch_partitions_waterlayered.jpg?​direct&​400|}}
 +
 +You are done.
 +
 +----
 +
 +=== Database generation ===
 +
 +Next, you will need to create the mesh databases.
 +
 +1. in case you can run parallel programs on your desktop (needs an MPI installation),​ you can run the executable like:
 +  [waterlayered_halfspace]$ cd bin/
 +  [bin]$ mpirun -np 4 ./​xgenerate_databases
 +
 +otherwise, you will need to modify and adapt one of the cluster scripts provided in the ''​SPECFEM3D/​utils/​Cluster/''​ directory.
 +
 +2. check the output file ''​in_out_files/​OUTPUT_FILES/​output_mesher.txt''​ to see if the databases were generated successfully.
 +  The output file contains the suggested time step for your mesh:
 +  Verification of simulation parameters ​
 +  ...
 +  Minimum period resolved =   ​1.632425 ​
 +  **Maximum suggested time step =   ​5.1801954E-03** ​
 +
 +----
 +
 +=== Forward simulation === 
 +
 +To run a forward simulation, do the following:
 +  ​
 +1. make sure, you have the parameter files in the directory ''​in_data_files/''​.
 +Most parameters in the ''​Par_file''​ should be set before running the database generation.
 +The following may be changed after running ''​xgenerate_databases'':​
 +  ​
 +  # forward or adjoint simulation
 +  SIMULATION_TYPE ​                = 1   # 1 = forward, 2 = adjoint, 3 = both simultaneously
 +  NOISE_TOMOGRAPHY ​               = 0   # 0 = earthquake simulation, ​ 1/2/3 = three steps in noise simulation
 +  SAVE_FORWARD ​                   = .false.  ​
 +  ​
 +  # time step parameters
 +  NSTEP                           = 4500
 +  DT                              = 0.005
 +  ​
 +  # absorbing boundary conditions for a regional simulation
 +  ABSORBING_CONDITIONS ​           = .true.
 +  ​
 +  # save AVS or OpenDX movies
 +  MOVIE_SURFACE ​                  = .false.
 +  MOVIE_VOLUME ​                   = .false.
 +  NTSTEP_BETWEEN_FRAMES ​          = 200
 +  CREATE_SHAKEMAP ​                = .false.
 +  SAVE_DISPLACEMENT ​              = .false.
 +  USE_HIGHRES_FOR_MOVIES ​         = .false.
 +  HDUR_MOVIE ​                     = 0.0
 +  ​
 +  # interval at which we output time step info and max of norm of displacement
 +  NTSTEP_BETWEEN_OUTPUT_INFO ​     = 500
 +  ​
 +  # interval in time steps for writing of seismograms
 +  NTSTEP_BETWEEN_OUTPUT_SEISMOS ​  = 10000
 +  ​
 +  # interval in time steps for reading adjoint traces
 +  NTSTEP_BETWEEN_READ_ADJSRC ​     = 0      # 0 = read the whole adjoint sources at the same time
 +  ​
 +  # print source time function
 +  PRINT_SOURCE_TIME_FUNCTION ​     = .false.
 +
 +2. in case you can run parallel programs on your desktop (needs an MPI installation),​ you can run the executable like:
 +  [waterlayered_halfspace]$ cd bin/
 +  [bin]$ mpirun -np 4 ./​xspecfem3D
 +
 +note, this example should take about 1 hour 45 minutes to finish the simulation.  ​
 +  ​
 +  ​
 +3. check the output file ''​output_solver.txt''​ in the output directory ''​in_out_files/​OUTPUT_FILES/'' ​
 +  to see if the forward simulation was successfully finishing.  ​
 +
 +  the seismograms will look like this, using gnuplot:
 +  gnuplot> plot "​X10.DB.BXZ.semd"​ w l,"​X20.DB.BXZ.semd"​ w l,"​X30.DB.BXZ.semd"​ w l
 +
 +{{:​software:​specfem3d:​tutorial:​waterlayered_seismograms.jpg?​direct&​500|}}
 +
 +==== Tutorial 3: Mount St. Helens ====
 +
 +The following instructions assume that you have installed [[http://​geodynamics.org/​cig/​software/​specfem3d/​|SPECFEM3D]] and familiarized yourself with how you will run the package based on your computer configuration,​ as detailed in the "​SPECFEM3D User manual":​http://​www.geodynamics.org/​wsvn/​cig/​seismo/​3D/​SPECFEM3D/​trunk/​doc/​USER_MANUAL/​manual_SPECFEM3D.pdf?​op=file&​rev=0&​sc=0 (Chapter 2 provides installation help). Additionally,​ we will make use of an external, hexahedral mesher [[http://​cubit.sandia.gov/​|CUBIT]]. Please make sure you have these packages installed on your system.
 +
 +The example is distributed with the package under the examples/ directory. However, you might need to edit these example scripts slightly to launch them on your system.
 +
 +=== Mount St. Helens ===
 +
 +This is a step-by-step tutorial how to create a mesh for a region around Mount St. Helens, export it into a [[http://​geodynamics.org/​cig/​software/​specfem3d/​|SPECFEM3D]] file format and run the mesh partitioning and database generation.
 +
 +Change to the example directory
 +  []$ cd SPECFEM3D/​examples/​Mount_StHelens
 +
 +Please also see the README file in this example directory. An example topography file "​ptopo.mean.utm"​ is provided as well, in the following we explain in detail how to construct such a file. 
 +
 +=== Downloading topography data ===
 +
 +You can get [[http://​srtm.csi.cgiar.org|SRTM]] 90m Digital Elevation Data for a region of interest at: [[http://​srtm.csi.cgiar.org|http://​srtm.csi.cgiar.org]]
 +
 +For this example, we choose Mount St.Helens as region of interest.
 +Mount St. Helens is located at: 46.197 N 122.186 W
 +This region is contained in a downloadable file ''​srtm_12_03.zip'',​ which you will have to download from 
 +[[http://​srtm.csi.cgiar.org/​SELECTION/​inputCoord.asp|http://​srtm.csi.cgiar.org/​SELECTION/​inputCoord.asp]]
 +using the region of interest: ​  
 +  Latitude min: 45 N  max: 50 N
 +  Longitude min: 125 W max: 120 W 
 +
 +unzipping the file
 +  [Mount_StHelens]$ unzip srtm_12_03.zip
 +
 +leads to:
 +  ..
 +  srtm_12_03.tif
 +  ..
 +
 +=== Converting Geotif topography data ===
 +
 +To convert the Geotif-file into an ''​longitude/​latitude/​elevation''​ format, you can use the package [[http://​fwtools.maptools.org/​|FWTools]] at: [[http://​fwtools.maptools.org/​|http://​fwtools.maptools.org/​]]
 +
 +Install the package and use their ''​gdal2xyz''​ executable to extract the tif file into xyz format:
 +  [Mount_StHelens]$ FWTools-2.0.6/​bin_safe/​gdal2xyz.py srtm_12_03.tif > srtm_12_03.xyz
 +
 +the newly created file ''​srtm_12_03.xyz''​ has now the format: ​
 +  #longitude #latitude #elevation (m)
 +
 +the file size is ~ 963 MB.
 +
 +=== Extracting the region of interest ===
 +
 +To further extract and manipulate the topography data, you can use the package [[http://​gmt.soest.hawaii.edu/​|GMT]] at: [[http://​gmt.soest.hawaii.edu/​|http://​gmt.soest.hawaii.edu/​]]
 +
 +For our purpose, the region of interest will be:
 +  \ -R-122.3/​-122.1/​46.1/​46.3//​
 +
 +that is a region of ~23 km x 23 km extent.
 +
 +{{:​software:​specfem3d:​tutorial:​mount-sthelens.jpg?​direct&​300|}}
 +
 +Using the ''​blockmean''​ executable from the GMT package, we extract and interpolate the topography data for the detailed region, using an interpolated grid spacing of 0.006 degrees (~ 700 m):
 +  [Mount_StHelens]$ blockmean srtm_12_03.xyz -R-122.3/​-122.1/​46.1/​46.3 -I0.006/​0.006 > ptopo.mean.xyz
 +
 +This will create a new file ''​ptopo.mean.xyz''​ with a ''​longitude/​latitude/​elevation''​ format of the region of interest
 +
 +=== Converting to Cartesian coordinates ===
 +
 +Since the CUBIT mesh will need Cartesian coordinates,​ we convert the topography file from ''​longitude/​latitude/​elevation''​ to ''​X/​Y/​Z''​ coordinates using a UTM projection.
 +Mount St.Helens lies in the UTM zone: 10 (T).
 +
 +Use the script "​convert_lonlat2utm.pl"​ provided in this example folder:
 +  [Mount_StHelens]$ ./​convert_lonlat2utm.pl ptopo.mean.xyz 10 > ptopo.mean.utm
 +  ​
 +to create a new file ''​ptopo.mean.utm''​ which will have a file format: ​
 +  #UTM_X (m) #UTM_Y (m) #Z (m)
 +
 +{{:​software:​specfem3d:​tutorial:​mount-sthelens-views.jpg?​direct&​400|}}
 +
 +----
 +
 +=== Meshing ===
 +
 +In the following, we will run a python script within [[http://​cubit.sandia.gov/​|CUBIT]] to create the needed mesh files for the partitioner.
 +
 +1. if not done so yet, change your working directory to the example folder:
 +  []$ cd SPECFEM3D/​examples/​Mount_StHelens
 +
 +2. start the graphical user interface (GUI) of [[http://​cubit.sandia.gov/​|CUBIT]]:  ​
 +  [Mount_StHelens]$ claro
 +
 +{{:​software:​specfem3d:​tutorial:​cubit12.jpg?​direct&​640|}}
 +  ​
 +3. run the python file "​read_topo.py":​
 +  use the (Play Journal File) button and open the file '​read_topo.py'​
 +
 +The script creates a topography surface ''​topo.stl''​ in STL file format as well as ''​topo.cub''​ based on file ''​ptopo.mean.utm''​.
 +
 +4. run the python file "​mesh_mount.py":​
 +  use the (Play Journal File) button and open the file '​mesh_mount.py'​
 +
 +In case the script executed successfully,​ it should create you a single volume with a refined mesh for the top layer, a triplication layer and a coarser mesh at the bottom.
 +
 +{{:​software:​specfem3d:​tutorial:​cubit_mountsthelens.jpg?​direct&​640|}}
 +
 +check that the script created a new folder "​MESH/"​ containing the files:
 +  [Mount_StHelens]$ ls -1 MESH/
 +  absorbing_surface_file_bottom
 +  absorbing_surface_file_xmax
 +  absorbing_surface_file_xmin
 +  absorbing_surface_file_ymax
 +  absorbing_surface_file_ymin
 +  free_surface_file
 +  materials_file
 +  mesh_file
 +  nodes_coords_file
 +  nummaterial_velocity_file
 +
 +you can also check if the export was successful by examining the output in the Command line window of CUBIT.
 +
 +----
 +
 +=== Setting up example folder for simulations ===
 +
 +We will set up the example folder for simulation runs: All the steps and following decomposition,​ database generation and solver run are put in a ''​process.sh''​ bash script file in the example folder. ​
 +
 +1. In case you can run parallel programs on your desktop (needs an MPI installation),​ you can simply run the script:
 +  [Mount_StHelens]$ ./​process.sh
 +
 +to do the setup and following steps for you. The simulation will run on 4 CPU cores by default. Please modify and adapt the script to your needs.
 +
 +{{:​software:​specfem3d:​tutorial:​mountsthelens_partitions.jpg?​direct&​400|}}
 +
 +Note, this example should take about 15 minutes to finish the simulation.  ​
 +  ​
 +2. check the output file ''​output_solver.txt''​ in the output directory ''​in_out_files/​OUTPUT_FILES/''​ to see if the forward simulation was successfully finishing.  ​
 +
 +the seismograms will look like this, using gnuplot:
 +  gnuplot> plot "​X10.DB.HXZ.semd"​ w l,"​X20.DB.HXZ.semd"​ w l,"​X30.DB.HXZ.semd"​ w l,"​X40.DB.HXZ.semd"​ w l
 +
 +{{:​software:​specfem3d:​tutorial:​mountsthelens_seismograms.jpg?​direct&​500|}}
software/specfem3d/start.txt ยท Last modified: 2015/02/11 17:45 by emheien